

Electronics Research Institute Sharif University of Technology

Multi-Head ReLU Implicit Neural Representation Networks

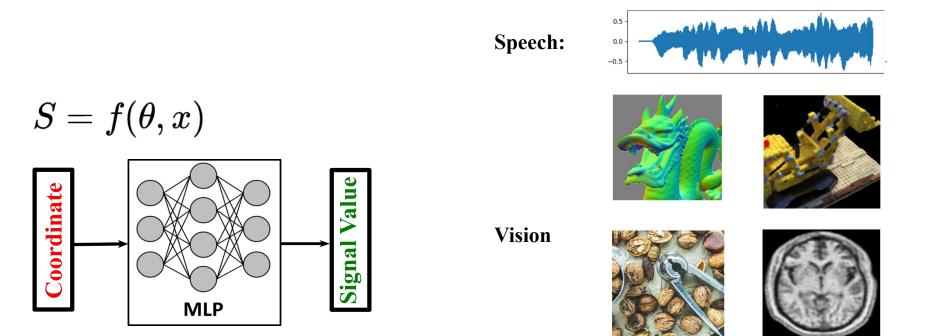
Authors:

Arya Aftab, Alireza Morsali, Shahrokh Ghaemmaghami

Presented by:

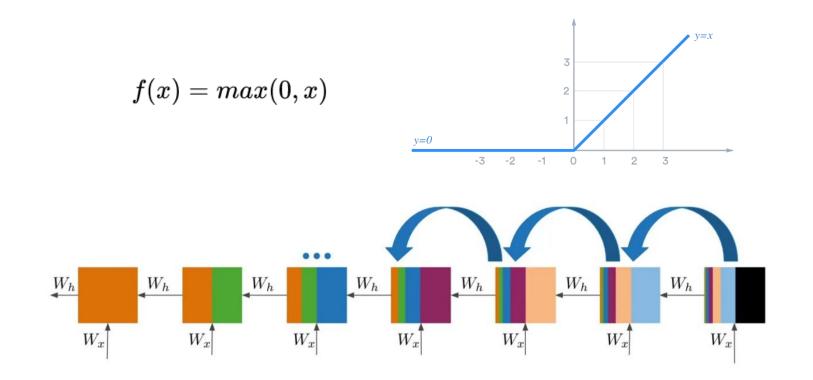
Arya Aftab

What is the implicit neural representation?



M. Tancik, P. P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Singhal, R. Ramamoorthi, J. T. Barron, and R. Ng, "Fourier features let networks learn high frequency functions in low dimensional domains," in Conf. Neural Inf. Process. Syst. (NeurIPS), June 2020.

ReLU Networks



What is the problem with ReLU networks?

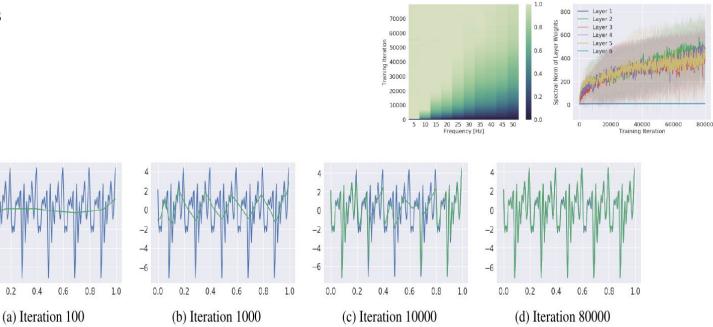
Spectral bias

0 -2

-4

-6

0.0



M. Tancik, P. P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Singhal, R. Ramamoorthi, J. T. Barron, and R. Ng, "Fourier features let networks learn high frequency functions in low dimensional domains," in Conf. Neural Inf. Process. Syst. (NeurIPS), June 2020.

How to Solve this problem?

• Positional encoding

$$\gamma(p) = (\sin(2^0 \pi p), \cos(2^0 \pi p), \cdots, \sin(2^{L-1} \pi p), \cos(2^{L-1} \pi p))$$
 Eq. 1

• Fourier Features

$$\gamma(\mathbf{v}) = \left[a_1 \cos(2\pi \mathbf{b}_1^{\mathrm{T}} \mathbf{v}), a_1 \sin(2\pi \mathbf{b}_1^{\mathrm{T}} \mathbf{v}), \dots, a_m \cos(2\pi \mathbf{b}_m^{\mathrm{T}} \mathbf{v}), a_m \sin(2\pi \mathbf{b}_m^{\mathrm{T}} \mathbf{v})\right]^{\mathrm{T}}$$
Eq. 2

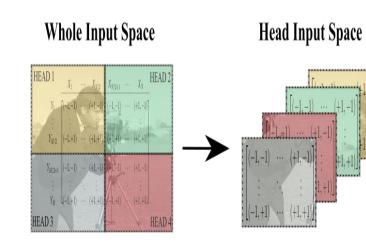
• Sine activation function

$$\gamma(\mathbf{v}) = \sin(W^T \mathbf{v} + b)$$
Eq. 3

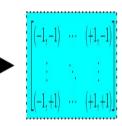
Our approach

Localization

 $\Phi(x(r), y(c)) = \mathbf{I}[r, c]$ (Eq. 1 $\mathcal{D} = \left\{ \left((x(r), y(c)), \mathbf{I}[r, c] \right) \right\}_{r, c=1}^{N_x, N_y}$ (Eq. 2 $\mathbf{I}_{l,k}[\hat{r}, \hat{c}] = \mathbf{I}[\hat{N}_h(l-1) + \hat{r}, \hat{N}_w(k-1) + \hat{c}]$ (Eq. 3 $\phi_{l,k}(\hat{x}(\hat{r}), \hat{y}(\hat{c})) = \mathbf{I}_{l,k}[\hat{r}, \hat{c}]$ (Eq. 4



Joint Input Space



Challenge in our approach

- High number of small networks
- Difficulty in training the whole structure

MLP		
MLP		
MLP		
MLP		
MLP		
MIP	MLP	

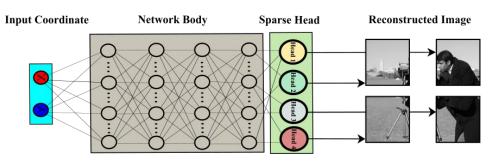
. . .

How to solve this Challenge?

- Share network body between small networks
- Consider all heads as a single layer
- Use a sparse layer instead of a dense layer for the heads

 $\phi_{l,k}(\hat{x}, \hat{y}) = \tau_{l,k}(\psi(\hat{x}, \hat{y}))$ (Eq. 1)

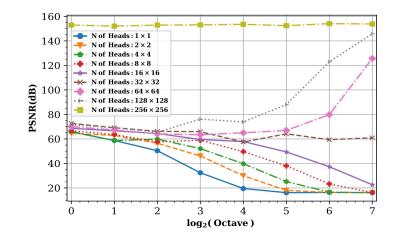
 $\min_{\tau_{l,k}(),\psi()} \sum_{\hat{r}=1}^{\hat{N}_{h}} \sum_{\hat{c}=1}^{\hat{H}_{w}} \sum_{l=1}^{H_{y}} \sum_{k=1}^{H_{y}} \left(\tau_{l,k} \Big(\psi\big(\hat{x}(\hat{r}),\hat{y}(\hat{c})\big) \Big) - \mathbf{I}_{l,k}[\hat{r},\hat{c}] \Big)^{2} \qquad \left(Eq. \ 2 \right)^{2}$

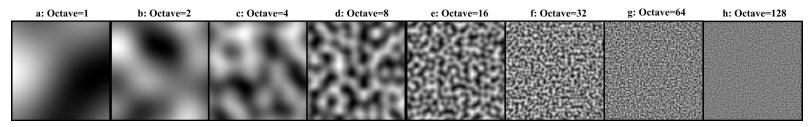


Results

Spectral bias

Train with Perlin noise



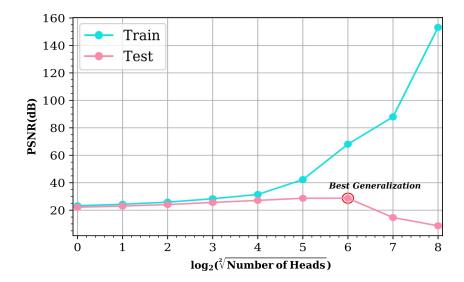


Results

Generalization ability

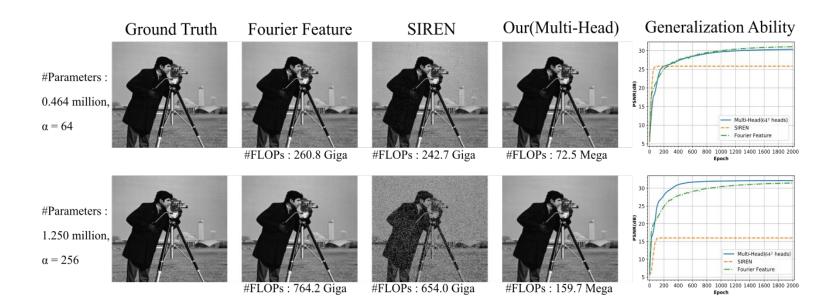
Train with down-sampled image: 256*256

Evaluate with original image: 512*512



Results

Comparison



Conclusions

- We proposed a novel structure that tackle spectral bias.
- The proposed structure has a much lower computational cost, as compared to other methods.
- Due to the shrinking input space with the increasing number of heads, training of the proposed structure takes less time than the time needed in existing methods.
- Experimental results show that the performance of our model is comparable to that of state-of-the-art methods.

References

1-M. Tancik, P. P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Singhal, R. Ramamoorthi, J. T. Barron, and R. Ng, "Fourier features let networks learn high frequency functions in low dimensional domains," in Conf. Neural Inf. Process. Syst. (NeurIPS), June 2020.

2-V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein, "Implicit neural representations with periodic activation functions," in Conf. Neural Inf. Process. Syst. (NeurIPS), June 2020

3-B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng, "NERF: Representing scenes as neural radiance fields for view synthesis," in European Conf. Comput. Vis. (ECCV), Aug. 2020, pp. 405–421.

4-R. Arora, A. Basu, P. Mianjy, and A. Mukherjee, "Understanding deep neural networks with rectified linear units," arXiv preprint arXiv:1611.01491, 2016.

5-N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin, F. Hamprecht, Y. Bengio, and A. Courville, "On the spectral bias of neural networks," in Int. Conf. Mach. Learn. (ICML). PMLR, July 2019, pp. 5301–5310.