

¹Department of Brain and Cognitive Engineering, Korea University, Republic of Korea and ²Department of Artificial Intelligence, Korea University, Republic of Korea {jaeun11, wjko, eunjinjeon, hisuk}@korea.ac.kr

MOTIVATIONS AND CONTRIBUTIONS

- Automatic Sleep Stage Classification
- Sleep plays a critical role in everyday health. Sleep staging is an important factor in measuring sleep quality and diagnosing sleep-related disease [1].
- Sleep scoring is a *labor-intensive*, *time-consuming* task, and there is no fixed standard because it is subject to the manuals and the scorer's subjectivity [2].
- The proposed deep learning method enables *au*tomatic sleep stage classification.

EXPERIMENTS AND RESULTS

• Materials

- We used two public EEG datasets, Sleep-EDF [4] and MASS [5], for sleep stage classification to evaluate our proposed method.

Performance Evaluation & Comparison

Performance comparison of the Sleep-EDF Fpz-Cz channel.

Method	Overall results						
	MF1	W	N1	N2	N3	REM	
Supratak <i>et al.</i> [3]	76.9	84.7	46.6	85.9	84.8	82.4	
Perslev <i>et al.</i> [7]	78.6	87.1	51.5	86.4	84.2	83.7	
Seo <i>et al.</i> [8]	77.6	87.7	43.4	87.7	84.8	82.4	
Qu <i>et al</i> . [9]	79.0	90.2	48.3	87.8	85.6	83.0	
Ours	81.0	89.1	54.8	88.5	87.2	85.0	

Performance comparison of the MASS F4-LER Channel.

Method	Overall results						
	MF1	W	N1	N2	N3	REM	
Supratak <i>et al.</i> [3]	81.2	87.5	55.4	91.3	84.8	87.2	
Qu et al. [9]	81.0	87.2	52.9	91.5	87.0	86.6	
Ours	81.3	86.0	56.9	91.6	84.4	87.8	

• Visualization of the Predicted Label

- We visualized 150 sequences of predicted label from the (a) stage-confusion estimator, (b) final decision, and (c) ground truth.
- The proposed method (b) classified confusing stages better than the comparable one (a) by exploiting inter-epoch relations.

Enhancing Contextual Encoding with Stage-Confusion and Stage-Transition Estimation for EEG-Based Sleep Staging

Jaeun Phyo¹, Wonjun Ko¹, Eunjin Jeon¹, and Heung-Il Suk^{1,2}

- designed modules with two auxiliary tasks. - We observed that the proposed method achieved
- promising performances on sleep staging experiments on two publicly available datasets.

Inter-epoch Context Encoder: The context encoder						
module \mathcal{E} embeds the inter-epoch relations from						
$\tilde{\mathbf{F}}_{1:N} = [\tilde{\mathbf{f}}_1 \cdots \tilde{\mathbf{f}}_N]$ and predicts the sleep stages						
over all N epochs, i.e., $E(\mathbf{F}_{1:N}, \tilde{\mathbf{F}}_{1:N}) = \hat{\mathbf{Y}}_{1:N}$						

– Adam optimizer, Weighted cross entropy loss

in sleep: update of the 2007 AASM manual for the scoring of sleep and associated events: deliberations ^[7] of the sleep apnea definitions task force of the American Academy of Sleep Medicine. J. Clin. Sleep Med., 8(5):597-619, 2012.

[3] Akara Supratak, Hao Dong, Chao Wu, and Yike Guo. DeepSleepNet: A model for automatic sleep stage scoring based on raw single-channel EEG. IEEE Trans. Neural Syst. Rehabil. Eng., 25(11):1998–2008, 2017. [4] Wonjun Ko, Eunjin Jeon, Seungwoo Jeong, and Heung-Il Suk. Multi-scale Neural Network for EEG Representation Learning in BCI. IEEE Comput. Intell. Mag., 16(2):31-45, 2021

[5] Bob Kemp, Aeilko H Zwinderman, Bert Tuk, Hilbert AC Kamphuisen, and Josefien JL Oberye. Analysis of [9] a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG. IEEE. Trans. Biomed. *Eng.*, 47(9):1185–1194, 2000.

open-access resource for instrument benchmarking and exploratory research. J. Sleep Res., 23(6):628-635,

Mathias Perslev, Michael Jensen, Sune Darkner, Poul Jørgen Jennum, and Christian Igel. U-time: A fully convolutional network for time series segmentation applied to sleep staging. In Proc. Adv. Neural Inf. Pro*cess. Syst.* (*NeurIPS*), pages 4415–4426, 2019.

Hogeon Seo, Seunghyeok Back, Seongju Lee, Deokhwan Park, Tae Kim, and Kyoobin Lee. Intra-and interepoch temporal context network (IITNet) using sub-epoch features for automatic sleep scoring on raw single-channel EEG. Biomed. Signal Process. Control, 61:102037, 2020.

Wei Qu, Zhiyong Wang, Hong Hong, Zheru Chi, David Dagan Feng, Ron Grunstein, and Christopher Gordon. A Residual based Attention Model for EEG based Sleep Staging. IEEE J. Biomed. Health Inform., 24(10):2833-2843, 2020.

IEEE ICASSP 2022, Paper #8540

where $\hat{\mathbf{Y}}_{1:N} = [\hat{\mathbf{y}}_1 \cdots \hat{\mathbf{y}}_N]$ denotes the predicted

– In this module, we additionally define an auxil-

– Basically, given a sequence of ground-truth stage labels in the training set, we can obtain the stage-transition labels $\mathbf{y}_{\tau}^{(t)}$, i.e., 'transition'

- The module is trained to optimally predict the sleep stages and the occurrence of stage transition at an epoch in multi-task learning formula-

Training Procedure: To train model parameters, we jointly optimize *two auxiliary tasks and one main*

– Total loss function L is computed as $L = WCE(\mathbf{y}_{\tau}, \hat{\mathbf{y}}_{\tau}) + \lambda^{(e)}WCE(\mathbf{y}_{\tau}, \mathbf{c}_{\tau}) +$ $\lambda^{(t)} \text{WCE}(\mathbf{y}_{\tau}^{(t)}, \hat{\mathbf{y}}_{\tau}^{(t)})$, where WCE, \mathbf{y}_{τ} are a classweighted cross-entropy and ground truth stage

(5) **Training Details**: The learning algorithm adopts