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Rotation-Invariant Point Cloud Completion

• Point clouds without a fixed orientation, even though they are 
complete, can still undermine the performance of the downstream 
tasks.

• Rotation-invariant point cloud completion
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CF-Net – Overall Architecture

6



Encoder
• PCN [1]

− Robust against local defects

− Rotation-variant

• RIConv [10]、AEConv [11]
− Sensitive to local defects

− Rotation-invariant

− Different perceptive fields

• Attention-based fusion layer similar to that 
proposed in LGR-Net [12]
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Decoder/Discriminator

8

• Pyramid Decoder [4]
− Proposed in PFNet
− Coarse-to-fine completion results

• ACGAN Discriminator [14]
− With classification loss is added

− Prevents generating an object in a wrong category but with high visual 
authenticity
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Evaluation Metric - Geometric

• Chamfer Distance (CD)
• F-score

• Geometric metrics have limitations.
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Evaluation Metric – Semantic

• Train a separate classification network on the ground truths
− PointNet-like [2]

− DGCNN-like [15]

• Feed the completion results to the classification network.

− Classification accuracy is the semantic metric

• High classification accuracy means
− Completion results perceived as the correct object

− Benefits downstream modules
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Results
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Operator Analysis

• We compare the operators included in our design
− For a fair comparison, we use a fully connected decoder for each 

operator 
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Operator Analysis
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Conclusion

• A good completion method should be able to handle input data 
taken from different viewpoints, and generate complete point 
clouds of a unified orientation.

• In this work, a neural network is designed for rotation invariant 
point cloud completion. The proposed CF-Net, with an encoder-
decoder structure, can generate quality results semantically and 
geometrically.
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