|        |                   | <b>AASIST:</b> A |
|--------|-------------------|------------------|
| lcassp | 2022<br>Singapore | <b>SPECTRO-</b>  |

Jee-weon Jung<sup>1</sup>, Hee-Soo Heo<sup>1</sup>, Hemlata Tak<sup>2</sup>, Hye-jin Shim<sup>3</sup>, Joon Son Chung<sup>4</sup>, bong-Jin Lee<sup>1</sup>, Ha-Jin Yu<sup>3</sup>, Nicholas Evans<sup>2</sup> <sup>1</sup>Naver Corporation, South Korea, <sup>2</sup>EURECOM, Sophia Antipolis, France <sup>3</sup>School of Computer Science, University of Seoul, <sup>4</sup>Korea Advanced Institute of Science and Technology, South Korea

| Objective: Develop an eff<br>spoofing attacks spanning                                                     | <b>ficient, single system</b> that<br>g in both spectral and tem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Proposed model: AASIST                                                                                     | Γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |
| <ul> <li>Builds upon previous state-of-the-art system that<br/>views (graphs) from raw waveform</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |
| Models heterogeneous                                                                                       | graph using proposed m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |
| EER 0.83% / min t-DCF 0.0275 on the ASVspoof.                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |
| <ul> <li>Includes 19 different vo</li> </ul>                                                               | bice conversion and text-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |
| Code available in <u>https://</u>                                                                          | github.com/clovaai/aasist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |
|                                                                                                            | Propo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
| Spoofing artefacts can lie                                                                                 | in specific sub-bands or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |
| Depends on the attack a                                                                                    | algorithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |
| * Strategy: extract spectral                                                                               | l & temporal representati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |
| <b>*</b> Architecture                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |
| RawNet2-encoder: extra<br>waveforms                                                                        | acts 3-dimensional featur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |
| • (channel, spectral bin                                                                                   | • (channel, spectral bins, temporal frames)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |
| <ul> <li>■ Element-wise maximum on either spectral or ten</li> <li>→ Two graph representations</li> </ul>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |
|                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |
| Metrics (lower is better)                                                                                  | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |
| • $\text{EER}(\%)$                                                                                         | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |
| ■ min t-DCF                                                                                                | 0.05 0.0481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |
| ★ Two model sizes                                                                                          | $\begin{array}{r} 0.05 \\ 0.04 \end{array} \\ 0.0368 \\ 0.0309 \\ 0.0333 \\ 0.0368 \\ 0.0309 \\ 0.0333 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 \\ 0.0368 $ |  |  |  |  |  |  |  |  |  |
| ■ AASIST: 297k                                                                                             | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |
| AASIST-L: 85k                                                                                              | RTS ONet ENet 010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |
| ✤ AASIST and AASIST-L                                                                                      | AA<br>AASI<br>-ST (base<br>SI<br>SI<br>SI<br>SI<br>SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
| show state-of-the-art                                                                                      | RawGAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |
| performance                                                                                                | Recent system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |

## **UDIO ANTI-SPOOFING USING INTEGRATED TEMPORAL GRAPH ATTENTION NETWORKS**

## Overview

Output

that can detect a broad range of different temporal domains

n that extracts two (spectral and temporal)

sed mechanism concurrently

poof2019 LA dataset

text-to-speech attacks

EER: equal error rate; DCF: detection cost function; LA: logical access; HS-GAL: heterogeneous stacking graph attention layer; MGO: max graph operation

| posed architecture & techniques |                                                                                                                             | Dataset & Configurations |                                            |                          |                        |  |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------|--------------------------|------------------------|--|
| s or frames                     | Graph module: graph attention layer + graph pooling layer                                                                   | **                       | Dataset: ASVspoof2019 LA                   |                          |                        |  |
|                                 | Graph combination: add edges to all possible node pairs                                                                     |                          |                                            | # bona fide<br>utterance | # spoofed<br>utterance |  |
| ntations $\rightarrow$ combine  | HS-GAL jointly models two heterogeneous graphs                                                                              |                          | Train                                      | 2,580                    | 22,800                 |  |
|                                 | • Heterogeneous attention: utilise different parameters for attention                                                       |                          | Development                                | 2,548                    | 22,296                 |  |
| eature map from raw             | • Stack node: receives information from all other nodes                                                                     |                          | Evaluation                                 | 7,355                    | 63,882                 |  |
|                                 | MGO exploits two same branches                                                                                              |                          | Input: raw waveform (4 seconds)            |                          |                        |  |
|                                 | • Different parameters, each branch includes two HS-GALs<br>Readout: concatenate node-wise maximum, average, and stack node |                          | RawNet2-encoder: 6 residual blocks         |                          |                        |  |
| r temporal dimension.           |                                                                                                                             |                          | Graph pooling: reduce 50% nodes            |                          |                        |  |
|                                 |                                                                                                                             |                          | Optimiser: Adam w/ learning rate of 0.0001 |                          |                        |  |





