

ABSTRACT

The aim of this work is to propose a novel architecture and training strategy for compress the convolutional features at multiple hidden layers, hinging on a novel end-to-end training procedure that learns different graph representations per each layer.

Contribution: We exploit autoencoders in each layer, before applying the pointwise nonlinearity, so that the convolutional features can be tunably compressed in an informationrich embedding. Then, since compression calls for learning a new graph representation to be used in the following layer, we formulate a novel training strategy that *jointly* optimizes the GNN weight parameters *and* the graph representations at different layers.

SIGNALS ON GRAPHS

- Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be a weighted undirected graph
- The sets $\mathcal{V} = \{1, 2, ..., N\}$ and $\mathcal{E} = \{a_{i,j}\}_{i,j \in \mathcal{V}}$ are the sets of vertices and edges, respectively
- The weights $a_{i,j} \ge 0$ if there is a relationship from vertex i to vertex j, or $a_{i,j} = 0$ otherwise.
- The adjacency matrix $\mathbf{A} \in \mathbb{R}^{N \times N}$: a collection of all weights, i.e., $\mathbf{A} = \{a_{i,j}\},\$ i, j = 1, ..., N
- The Laplacian matrix: $\mathbf{L} = \operatorname{diag}(\mathbf{1}^T \mathbf{A}) \mathbf{A}$, where $\operatorname{diag}(\mathbf{x})$ is a matrix having \mathbf{x} as main diagonal, and zeros elsewhere
- A graph signal (or data) is defined as a one-to-one mapping from the set \mathcal{V} of vertices to the set of real numbers:

$$\boldsymbol{x} = \boldsymbol{\mathcal{V}} \to \mathbb{R}$$
 (1)

- An order *K* linear shift invariant graph filter (LSIGF) can be written as a *K*-degree polynomial of the shift operator $\mathbf{\tilde{S}}$, with coefficients $\boldsymbol{h} = [h_0, ..., h_{K-1}]^T$.
- Let *u* and *y* be the input and the filtered signals, respectively, we have:

$$\boldsymbol{y} = \sum_{k=0}^{K-1} [\boldsymbol{h}]_k \mathbf{S}^k \boldsymbol{u}.$$
 (2)

- The LSIGF are able to account for the local structure of the graph, requiring information only from the *K*-neighborhood of each node.
- Linear and shift invariant graph filters represent a legit generalization of the convolution operation for signals supported on graphs [1], and are the basic building block of GCNs.

GRAPH CONVOLUTIONAL NETWORKS

• The *l*-th layer of a GCN, taking as input $\widetilde{\mathbf{Z}}_{l-1} = \{\widetilde{\boldsymbol{z}}_{l-1}^f\}_{f=1}^{F_{l-1}}$ and yielding as output $\widetilde{\mathbf{Z}}_l = \{\widetilde{\boldsymbol{z}}_l^g\}_{q=1}^{F_l}$, with pointwise non-linearity $\sigma_l(\cdot)$, reads as: [2]:

$$\widetilde{\boldsymbol{z}}_{l}^{g} := \sigma_{l} \left(\sum_{f=1}^{F_{l-1}} \sum_{k=0}^{K_{l}-1} [\boldsymbol{h}_{l}^{fg}]_{k} \mathbf{S}^{k} \widetilde{\boldsymbol{z}}_{l-1}^{f} \right), \quad g = 1, \dots, F_{l}.$$

$$(3)$$

- The order K_l of the filters, the number F_l of convolutional features of the output, and the non-linearity $\sigma_l(\cdot)$ are hyperparameters to be chosen at each layer
- A GCN of depth *L* with input data **X** is built as the stack of *L* layers defined as in (3), where $\mathbf{Z}_0 = \mathbf{X}$
- Based on the learning task, an additional multi layer perceptron (MLP) can be inserted after the last layer

GRAPH CONVOLUTIONAL NETWORKS WITH AUTOENCODER-BASED COMPRESSION AND MULTI-LAYER GRAPH LEARNING

L. GIUSTI¹ C. BATTILORO² P. DI LORENZO² S. BARBAROSSA² ¹ DIAG DEPARTMENT, SAPIENZA UNIVERSITY OF ROME, VIA ARIOSTO 25, 00185, ROME, ITALY

²CDIET DEPARTMENT, SAPIENZA UNIVERSITY OF ROME, VIA EUDOSSIANA 18, 00184, ROME, ITALY

AUTOENCODER-AIDED GRAPH CONV NETS

- The idea is to exploit autoencoders to perform representation learning and dimensionality reduction in the context of GCNs [3].
- Each layer is composed of three main stages: (i) A linear shift invariant graph filtering stage; (ii) Autoencoder-based compression; (iii) Pointwise non-linearity
- Autoencoders are able to reduce the dimension of the hidden layers' convolutional features, thus learning powerful and task-oriented low-dimensional representations in a data-driven fashion.
- To this aim, the layer in (3) is modified in the following way:

$$\widetilde{\boldsymbol{z}}_{l}^{g} = \sigma_{l} \left(\underbrace{f_{l}^{e} \left(\boldsymbol{u}_{l}^{g} \right)}_{\boldsymbol{z}^{g}} \right), \quad g = 1, \dots, F_{l}, \tag{4}$$

Where $\widetilde{\boldsymbol{z}}_{l}^{g} \in \mathbb{R}^{N_{l}}$, $N_{l} \in \mathbb{N}$ is (generally) smaller than N_{l-1} , $f_{l}^{e} : \mathbb{R}^{N_{l-1}} \to \mathbb{R}^{N_{l}}$ is the encoder function of an autoencoder $f_l^d \circ f_l^e : \mathbb{R}^{N_l - 1} \to \mathbb{R}^{N_l - 1}$ associated with the *l*-th layer of the GCN, and

$$\boldsymbol{u}_{l}^{g} = \sum_{f=1}^{F_{l-1}} \sum_{k=0}^{K_{l}-1} [\boldsymbol{h}_{l}^{fg}]_{k} \mathbf{S}_{l}^{k} \widetilde{\boldsymbol{z}}_{l-1}^{f}, \quad g = 1, ..., F_{l},$$
(5)

where S_l denotes the shift operator associated with the *l*-th layer. The compressed features at layer l are denoted as $\mathbf{Z}_l = \{\boldsymbol{z}_l^g\}_{q=1}^{F_l}$, and the final output of the layer is $\widetilde{\mathbf{Z}}_l \in \mathbb{R}^{N_l \times F_l}$. We call the stack of *L* layers as in (4) an Autoencoder-Aided Graph Convolutional Network (AA-GCN).

PROBLEM FORMULATION

$$\min_{\mathbf{A}_{l}\}_{l=1}^{L}, \mathbf{H}, \mathbf{W}} \mathcal{L}(\{\mathbf{A}_{l}\}_{l=1}^{L}, \mathbf{H}, \mathbf{W}; \{\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\}_{i \in \mathcal{T}})$$

$$+ \eta \sum_{l=1}^{L} \sum_{g=1}^{F_{l}} ||f_{l}^{d} \circ f_{l}^{e}(\boldsymbol{w}_{l}; \boldsymbol{u}_{l}^{g}) - \boldsymbol{u}_{l}^{g}||_{2}^{2}; \rightarrow \text{ Autoencoders' Loss}$$

$$+ \beta \sum_{l=1}^{L} \text{Tr}\{\widetilde{\mathbf{Z}}_{l}^{T} \mathbf{L}_{l}\widetilde{\mathbf{Z}}_{l}\}; \rightarrow \text{ Promote signal smoothness}$$

$$- \gamma \sum_{l=1}^{L} \mathbf{1}^{T} \log(\mathbf{A}_{l}\mathbf{1}); \rightarrow \text{ Penalize disconnected components}$$

$$+ \lambda \sum_{l=1}^{L} ||\mathbf{A}_{l}||_{F}^{2}; \rightarrow \text{ Weights' regularizer}$$

$$\text{ subject to } \qquad [\mathbf{A}_{l}]_{i,i} = 0 \rightarrow \text{ no self-loops in the learnt graphs} \qquad (6)$$

$$[\mathbf{A}_{l}]_{i,j} = [\mathbf{A}_{l}]_{j,i} \geq 0, \qquad \forall i, j, l \rightarrow \text{ edge weights must be positive and symmetric}$$

$$\text{Tr}\{\mathbf{L}_{l}\} = d_{l}, \forall l \rightarrow \text{ avoid null solutions}$$

where λ , β , γ , η , and d_l are non-negative parameters to be tuned.

 α_l , for $l = 1, \ldots, L$

ALGORITHMIC SOLUTION

Alg	orith
	Inpu
	$\mu \in \Lambda$
	Δ_{μ} $\Pi($
	$\{\mathcal{B}$
	Est
	Lo
	$\int \hat{\alpha}$
	$\hat{\mathbf{H}}$:
	$\widehat{\mathbf{W}}$
1:	funct
2:	fc
3:	
4:	
5:	
5: 6:	re
5: 6:	re
5: 6:	re
5: 6: P R	re
5: 6: P R	re
5: 6: PR	re OJE
5: 6: P R	re OJE orith Inpu
5: 6: P R	re OJE orith Inpu {ã
5: 6: P R	re OJE orith Inpu {ã {N
5: 6: P R	orith for i th $\{\tilde{\alpha}_{i}\}$ $\{\mathcal{A}_{i}\}$
5: 6: Alg	orith for δa $\{ a \\ 0 \\ \{ a \\ \{ $
5: 6: Alg	orith for i th $\{\tilde{\alpha}_i\}$ $\{\mathcal{A}_i\}$ $\{\mathcal{A}_i\}$ $\{\mathcal{A}_i\}$ $\{\mathcal{A}_i\}$ $\{\mathcal{A}_i\}$ $\{\mathcal{A}_i\}$ $\{\mathcal{A}_i\}$ $\{\mathcal{A}_i\}$ $\{\mathcal{A}_i\}$ $\{\mathcal{A}_i\}$ $\{\mathcal{A}_i\}$
5: 6: Alg	orith for i th for i th
5: 6: Alg	orith for i th i i i i i i i i i i
5: 6: Alg	orith for i th i i i i i i i i i i

HALF-VECTOR

• Since the adjacency matrices are symmetric, the number of variables of the optimization problem can be greatly reduced (approximatively by a factor of two) solving for the lower triangular parts of \mathbf{A}_l for all $l = 1, \dots, L$

• Let $\alpha_l := \operatorname{vech}(\mathbf{A}_l) \in \mathbb{R}^{\frac{N(N+1)}{2}}$ be the half-vectorization of \mathbf{A}_l , obtained by vectorizing only the lower triangular part of $\{A_l\}_l$ • Then, the following relations hold:

 $\operatorname{vec}(\mathbf{A}_l) = \mathbf{M}_d \boldsymbol{\alpha}_l \quad \Longleftrightarrow \quad \mathbf{A}_l = \operatorname{vec}^{-1}(\mathbf{M}_d \boldsymbol{\alpha}_l),$

• $vec(\cdot)$ and $vec^{-1}(\cdot)$ are the vectorization and the inverse vectorization operators, respectively

• $\mathbf{M}_d \in \mathbb{R}^{N^2 \times \frac{N(N+1)}{2}}$ is the (highly sparse) duplication matrix

All the objective terms and the constraints can be easily recast in terms of the variables

m 1 : AA-GCN TRAINING

ts:

 $\in \mathbb{R}$: Learning rate.

 $_{\iota}(\cdot)$: Optimizer-dependent backpropagation step.

- \cdot): Projection operator on the feasible set.
- $\in \mathbb{N}_+$: Maximum number of training iterations.
- $\mathcal{B}_t \}_{t=1}^E$: Training dataset batches

timates initializations $\widehat{\mathbf{H}}_0$, $\widehat{\mathbf{W}}_0$ and $\{\widehat{\boldsymbol{\alpha}}_{l,0}\}_l$. oss $\mathcal{L}(\cdot)$.

outs:

 ${\hat{a}}_l$: Learned graph encodings.

Learned graph filters weights.

I: Learned autoencoders weights.

ction AA-GCN TRAINING(Inputs)

or $t \in [1, E]$ do

 $\widehat{\mathbf{H}}_{t+1} = \Delta_{\mu} \Big(\nabla_{\mathbf{H}} \mathcal{L} \left(\widehat{\mathbf{H}}_{t}; \mathcal{B}_{t}, \{ \widehat{\boldsymbol{\alpha}}_{l,t} \}_{l}, \widehat{\mathbf{W}}_{t} \right) \Big)$

 $\widehat{\mathbf{W}}_{t+1} = \Delta_{\mu} \Big(\nabla_{\mathbf{W}} \mathcal{L} \left(\widehat{\mathbf{W}}_{t}; \mathcal{B}_{t}, \{ \widehat{\boldsymbol{\alpha}}_{l,t} \}_{l}, \widehat{\mathbf{H}}_{t} \right) \Big)$

 $\widehat{\boldsymbol{\alpha}}_{l,t+1} = \Pi \Big(\Delta_{\mu} \Big(\nabla_{\boldsymbol{\alpha}_{l}} \mathcal{L} \left(\{ \widehat{\boldsymbol{\alpha}}_{l,t} \}_{l}, \mathcal{B}_{t}, \widehat{\mathbf{W}}_{t}, \widehat{\mathbf{H}}_{t} \right) \Big) \Big), \ \forall l$

return $\{\widehat{\alpha}_l\}_l = \{\widehat{\alpha}_{l,E}\}_l, \ \widehat{\mathbf{W}} = \widehat{\mathbf{W}}_E, \ \widehat{\mathbf{H}} = \widehat{\mathbf{H}}_E$

ECTION ALGORITHM

m 2 Euclidean projection of $\widetilde{\alpha}_l$ onto \mathcal{X} [4]

 $\{t_l\}_l$: Updated graphs parameters.

 V_l _{*l*}: Number of nodes of $\{G_l\}_l$.

 $_l$: Expected degrees of nodes at layer *l*.

out: ${\hat{k}}_l$: Projected updated graphs estimates.

rator $\Pi_{\mathcal{X}}({\{\widetilde{\boldsymbol{\alpha}}_{l,t+1}\}_l})$: for l = 1, ..., L do:

Set $[A_l]_{i,i} = 0;$

Sort $\tilde{\alpha}_l$ in increasing order;

$$\rho := \max_{1 \le j \le dim(\widetilde{\alpha}_l)} [\widetilde{\alpha}_l]_j + \frac{1}{j} \left(\frac{d_l}{2} - \sum_{i=1}^j [\widetilde{\alpha}_l]_i \right) \text{ s.t. } [\widetilde{\alpha}_l^*]_j > 0$$
$$\underbrace{[\widetilde{\alpha}_l^*]_j}_{\lambda := \frac{1}{\rho} \left(\frac{d_l}{2} - \sum_{i=1}^\rho [\widetilde{\alpha}_l]_i \right)}$$

Set $[\hat{\boldsymbol{\alpha}}_l]_i = \max[\widetilde{\boldsymbol{\alpha}}_l]_i + \lambda, 0$

signals supported on graphs. IEEE Transactions on Signal Processing, 67(4):1034–1049, 2019.

[3] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propagation. In Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Volume 1: *Foundations*, pages 318–362. MIT Press, Cambridge, MA, 1986.

[4] W. Wang and M. A. Carreira-Perpinán. Projection onto the probability simplex: An efficient algorithm with a simple proof and an application. *arXiv:1309.1541*, 2013.