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ABSTRACT AUTOENCODER-AIDED GRAPH CONV NETS HALF-VECTOR

The aim of this work is to propose a novel architecture and training strategy for com- . . . _ . .
press the convolutional features at multiple hidden layers, hinging on a novel end-to-end * Theideais to exploit autoencoders to perform representation learning and dimen- Since the adjacency matrices are symmetric, the number of variables of the op-

training procedure that learns different graph representations per each layer. sionality reduction in the context of GCNs [3]. timization problem can be greatly reduced (approximatively by a factor of two)
solving for the lower triangular partsof A; foralll =1,...,L

e Each layer is composed of three main stages: (i) A linear shift invariant graph N(N4+1)
filtering stage; (ii) Autoencoder-based compression; (iii) Pointwise non-linearity Let o; := vech(A;) € R™ 2 be the half-vectorization of A;, obtained by
vectorizing only the lower triangular part of {A;};

Contribution: We exploit autoencoders in each layer, before applying the pointwise non-
linearity, so that the convolutional features can be tunably compressed in an information-
rich embedding. Then, since compression calls for learning a new graph representation
to be used in the following layer, we formulate a novel training strategy that jointly opti- e Autoencoders are able to reduce the dimension of the hidden layers’ convolutional Then, the following relations hold:

mizes the GNN weight parameters and the graph representations at different layers. features, thus learning powerful and task-oriented low-dimensional representa- vec(A)) = Mya; <<= A, =ve o1 (Myay) (7)
. . . . )
tions in a data-driven fashion.

vec(+) and vec™1(+) are the vectorization and the inverse vectorization operators,

e To this aim, the layer in (3) is modified in the following way: tivel
respectively

ngzo-l(fle(ulg))a g:]-a'“aFl) (4)
N —’
Let G = (V, £) be a weighted undirected graph 29

l

SIGNALS ON GRAPHS

N2y N(N+1) . — .
M, eR 2 is the (highly sparse) duplication matrix

Thesets V = {1,2,..., N} and £ = {a; ; }; jcv are the sets of vertices and edges, All the objective terms and the constraints can be easily recast in terms of the variables
respectively Where z{ € RV, N; € Nis (generally) smaller than N;_q, ff : RVi—1 — RN s the o, forl=1,.... L

encoder function of an autoencoder fl i : RVi—-1 — RNi—1 associated with the I-th

. o > . o . ° . b .. =
The weights a; ; > 0 if there is a relationship from vertex i to vertexj, or a; ; = 0 layer of the GCN, and

otherwise.

The adjacency matrix A € RN *N: a collection of all weights, i.e., A = {a; ;}, Fio1 K — o1 ket ALGORITHMIC SOLUTION
’I:,j:]_,...,N Y y: h g kSl 271 1 g:17°'°7Fl7 (5)
f=1 k=0

The Laplacian matrix: L = diag(11'A) — A, where diag(x) is a matrix having =
as main diagonal, and zeros elsewhere where S; denotes the shift operator associated with the [-th layer. The compressed

. , Algorithm 1: AA-GCN TRAINING
A graph signal (or data) is defined as a one-to-one mapping from the set V of features at layer / are denoted as Z; = {zlg}fl:y and the final output of the layer is 5

vertices to the set of real numbers: Z, € RN XFi We call the stack of L layers as in (4) an Autoencoder-Aided Graph Con- Inputs: _
e —V SR ) volutional Network (AA-GCN). p € R: Learning rate.
B A, (+): Optimizer-dependent backpropagation step.
An order K linear shift invariant graph filter (LSIGF) can be written as a K-degree II(-): Projection operator on the feasible set.
polynomial of the shift operator S, with coefficients h = [ho, ..., hx 1)1 E € N, : Maximum number of training iterations.

{B;}{~: Training dataset batches

Let u and y be the input and the filtered signals, respectively, we have:

Estimates initializations Ho, WO and {ay o }:.
Loss L(-).

) LSIGF 0 . — Outputs:

a s ompression (c) Nonlinearity = .

The LSIGF are able to account for the local structure of the graph, requiring infor- . e v 0000 0eee. {a I }l: Learned graph encodmgs.
mation only from the K-neighborhood of each node.

K-1

y= > [hS"u. 2)

k=0

S, € RN THED o +) H: Learned graph filters weights.

Linear and shift invariant graph filters represent a legit generalization of the con- @IS O 4 D) W: Learned autoencoders weichts
volution operation for signals supported on graphs [1], and are the basic building - @ T/ ' SLS.
block of GCN. Z,={E), T § ‘= : function AA-GCN TRAINING(Inputs)
BerY \ - ) : fort € [1,E| do
(a) LSIGFs (b) Compression (c) Nonlinearity : Ht—l—l — A,u (VHE (Ht, Bt, {&l,t}l, Wt))

GRAPH CONVOLUTIONAL NETWORKS

S; € RM>xM HED) or( )

Wtﬂ — AM (VW»C (Wt; B, {al,t}la ﬁt))

— N [ > = &
. o re - G101 = (A (Ve £ ({8uh, B, Wi, Hy) ) ), W
The [-th layer of a GCN, taking as input Z;_1 = {Zl_l}?l:_ll and yielding as Z,= @), 8 : {/; ' Litl A\t (1o, B, Wi Hy) ) )
output Z; = {zlg 41, With pointwise non-linearity o;(-), reads as: [2]: Fert || ® ) \ ) return {oy}; ={oy g}, W=Wg, H=Hgpg
(a) LSIGFs (b) Compression (c) Nonlinearity

Fr_1 K;—
z] = O'l< S‘ S‘ hfg kSkzl 1), g=1,..., F]. (3)

f=1 k=0

PROJECTION ALGORITHM

The order K of the filters, the number F} of convolutional features of the output,
and the non-linearity o;(-) are hyperparameters to be chosen at each layer

A GCN of depth L with input data X is built as the stack of L layers defined as in
(3), where Zg = X

Based on the learning task, an additional multi layer perceptron (MLP) can be
inserted after the last layer

PROBLEM FORMULATION

Algorithm 2 Euclidean projection of o; onto X [4]

anin E({Al}lea H, W;{xi,y;}icT) InPEt:
A3, HW {ay};: Updated graphs parameters.
L L {N;};: Number of nodes of {G; };.
d e . _ 2, /
T lz::l ; 170 £ (wi; w)) = uj||2; — Autoencoders” Loss {d;};: Expected degrees of nodes at layer I.
. Output:

+ 6 Z Tr{zrlezl}; — Promote signal smoothness {al }l: Projecied updated graphs estimates.

=1 Operator [1x ({a ¢1+1}1):

L for/{=1,..., L do:
— Z 1Tlog(Al 1); — Penalize disconnected components Set [ A l]z‘ ; = 0;
=1 , :

Sort a; in increasing order;

+ A Z |A;||%; — Weights’ regularizer
=1 p = max
1<j<dim(cy)

subject to

[A;]:,s = 0 — no self-loops in the learnt graphs (6)

[A]i; = [Ay]j >0, Vi,j,1 — edge weights must be positive and symmetric ) =1 (% - > 1[&l]i)
p pr—

Tr{L;} = d;, VI — avoid null solutions

Set [&y]; = max [ay]; + A, 0

where A, 3, v, n, and d; are non-negative parameters to be tuned.
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NUMERICAL RESULTS
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e The first results show the accuracy score compared to the compression ratio: p =
N1/N

* The results show the accuracy score compared to the SNR of the training data:
SNR = 10log,, (03/02), o3 and oZ are the variance of the data used for train-
ing our model and the variance of the AWGN, respectively.

e For a fair comparison, the second hidden layer does not provide a coarser version
of the first one

CONCLUSIONS

* We have enabled tunable compression of the convolutional features, while learn-
ing different graph representations jointly with the GNN parameters

The architecture scales well with the number of nodes of the input graph, extract-
ing higher level representations of the convolutional features

Experiments illustrate the competitive performance of our architecture with re-
spect to state of the art methods

Future developments of this research trend include: Topological Neural Net-
works, Explainability, include additional regularisations to the autoencoders’ loss
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