
GRAPH CONVOLUTIONAL NETWORKS WITH AUTOENCODER-BASED
COMPRESSION AND MULTI-LAYER GRAPH LEARNING

L. GIUSTI1 C. BATTILORO2 P. DI LORENZO2 S. BARBAROSSA2
1 DIAG DEPARTMENT, SAPIENZA UNIVERSITY OF ROME, VIA ARIOSTO 25, 00185, ROME, ITALY

2CDIET DEPARTMENT, SAPIENZA UNIVERSITY OF ROME, VIA EUDOSSIANA 18, 00184, ROME, ITALY

ABSTRACT
The aim of this work is to propose a novel architecture and training strategy for com-
press the convolutional features at multiple hidden layers, hinging on a novel end-to-end
training procedure that learns different graph representations per each layer.

Contribution: We exploit autoencoders in each layer, before applying the pointwise non-
linearity, so that the convolutional features can be tunably compressed in an information-
rich embedding. Then, since compression calls for learning a new graph representation
to be used in the following layer, we formulate a novel training strategy that jointly opti-
mizes the GNN weight parameters and the graph representations at different layers.

SIGNALS ON GRAPHS

• Let G = (V, E) be a weighted undirected graph

• The sets V = {1, 2, ..., N} and E = {ai,j}i,j∈V are the sets of vertices and edges,
respectively

• The weights ai,j ≥ 0 if there is a relationship from vertex i to vertex j, or ai,j = 0
otherwise.

• The adjacency matrix A ∈ RN×N : a collection of all weights, i.e., A = {ai,j},
i, j = 1, ..., N

• The Laplacian matrix: L = diag(1TA) − A, where diag(x) is a matrix having x
as main diagonal, and zeros elsewhere

• A graph signal (or data) is defined as a one-to-one mapping from the set V of
vertices to the set of real numbers:

x = V → R (1)

• An order K linear shift invariant graph filter (LSIGF) can be written as a K-degree
polynomial of the shift operator S, with coefficients h = [h0, ..., hK−1]

T .

• Let u and y be the input and the filtered signals, respectively, we have:

y =

K−1∑
k=0

[h]kS
ku. (2)

• The LSIGF are able to account for the local structure of the graph, requiring infor-
mation only from the K-neighborhood of each node.

• Linear and shift invariant graph filters represent a legit generalization of the con-
volution operation for signals supported on graphs [1], and are the basic building
block of GCNs.

GRAPH CONVOLUTIONAL NETWORKS

• The l-th layer of a GCN, taking as input Z̃l−1 = {z̃f
l−1}

Fl−1

f=1 and yielding as

output Z̃l = {z̃g
l }

Fl
g=1, with pointwise non-linearity σl(·), reads as: [2]:

z̃g
l := σl

(Fl−1∑
f=1

Kl−1∑
k=0

[hfg
l]kS

kz̃f
l−1

)
, g = 1, ..., Fl. (3)

• The order Kl of the filters, the number Fl of convolutional features of the output,
and the non-linearity σl(·) are hyperparameters to be chosen at each layer

• A GCN of depth L with input data X is built as the stack of L layers defined as in
(3), where Z̃0 = X

• Based on the learning task, an additional multi layer perceptron (MLP) can be
inserted after the last layer

AUTOENCODER-AIDED GRAPH CONV NETS

• The idea is to exploit autoencoders to perform representation learning and dimen-
sionality reduction in the context of GCNs [3].

• Each layer is composed of three main stages: (i) A linear shift invariant graph
filtering stage; (ii) Autoencoder-based compression; (iii) Pointwise non-linearity

• Autoencoders are able to reduce the dimension of the hidden layers’ convolutional
features, thus learning powerful and task-oriented low-dimensional representa-
tions in a data-driven fashion.

• To this aim, the layer in (3) is modified in the following way:

z̃g
l = σl

(
fe
l

(
ug
l

)︸ ︷︷ ︸
zg

l

)
, g = 1, ..., Fl, (4)

Where z̃g
l ∈ RNl , Nl ∈ N is (generally) smaller than Nl−1, fe

l : RNl−1 → RNl is the
encoder function of an autoencoder fd

l ◦ fe
l : RNl−1 → RNl−1 associated with the l-th

layer of the GCN, and

ug
l =

Fl−1∑
f=1

Kl−1∑
k=0

[hfg
l]kS

k
l z̃

f
l−1, g = 1, ..., Fl, (5)

where Sl denotes the shift operator associated with the l-th layer. The compressed
features at layer l are denoted as Zl = {zg

l }
Fl
g=1, and the final output of the layer is

Z̃l ∈ RNl×Fl . We call the stack of L layers as in (4) an Autoencoder-Aided Graph Con-
volutional Network (AA-GCN).

PROBLEM FORMULATION

min
{Al}Ll=1

,H,W
L({Al}Ll=1,H,W; {xi,yi}i∈T)

+ η

L∑
l=1

Fl∑
g=1

||fd
l ◦ fe

l (wl;u
g
l)− ug

l ||
2
2;→ Autoencoders’ Loss

+ β
L∑

l=1

Tr{Z̃T
l LlZ̃l};→ Promote signal smoothness

− γ
L∑

l=1

1T log(Al1);→ Penalize disconnected components

+ λ

L∑
l=1

||Al||2F ;→ Weights’ regularizer

subject to

[Al]i,i = 0 → no self-loops in the learnt graphs (6)

[Al]i,j = [Al]j,i ≥ 0, ∀ i, j, l → edge weights must be positive and symmetric

Tr{Ll} = dl, ∀ l → avoid null solutions

where λ, β, γ, η, and dl are non-negative parameters to be tuned.

HALF-VECTOR

• Since the adjacency matrices are symmetric, the number of variables of the op-
timization problem can be greatly reduced (approximatively by a factor of two)
solving for the lower triangular parts of Al for all l = 1, . . . , L

• Let αl := vech(Al) ∈ R
N(N+1)

2 be the half-vectorization of Al, obtained by
vectorizing only the lower triangular part of {Al}l

• Then, the following relations hold:

vec(Al) = Mdαl ⇐⇒ Al = vec−1(Mdαl), (7)

• vec(·) and vec−1(·) are the vectorization and the inverse vectorization operators,
respectively

• Md ∈ RN2×N(N+1)
2 is the (highly sparse) duplication matrix

All the objective terms and the constraints can be easily recast in terms of the variables
αl, for l = 1, . . . , L

ALGORITHMIC SOLUTION

Algorithm 1 : AA-GCN TRAINING
Inputs:
µ ∈ R: Learning rate.
∆µ(·): Optimizer-dependent backpropagation step.
Π(·): Projection operator on the feasible set.
E ∈ N+: Maximum number of training iterations.
{Bt}Et=1: Training dataset batches
Estimates initializations Ĥ0, Ŵ0 and {α̂l,0}l.
Loss L(·).

Outputs:
{α̂l}l: Learned graph encodings.
Ĥ: Learned graph filters weights.
Ŵ: Learned autoencoders weights.

1: function AA-GCN TRAINING(Inputs)
2: for t ∈ [1, E] do
3: Ĥt+1 = ∆µ

(
∇HL (Ĥt;Bt, {α̂l,t}l,Ŵt)

)
4: Ŵt+1 = ∆µ

(
∇WL (Ŵt;Bt, {α̂l,t}l, Ĥt)

)
5: α̂l,t+1 = Π

(
∆µ

(
∇αl

L ({α̂l,t}l,Bt,Ŵt, Ĥt)
))

, ∀l

6: return {α̂l}l = {α̂l,E}l, Ŵ = ŴE , Ĥ = ĤE

PROJECTION ALGORITHM

Algorithm 2 Euclidean projection of α̃l onto X [4]
Input:
{α̃l}l: Updated graphs parameters.
{Nl}l: Number of nodes of {Gl}l.
{dl}l: Expected degrees of nodes at layer l.

Output:
{α̂l}l: Projected updated graphs estimates.

Operator ΠX ({α̃l,t+1}l):
for l = 1, ..., L do:

Set [Al]i,i = 0;
Sort α̃l in increasing order;

ρ := max
1≤j≤dim(α̃l)

[α̃l]j +
1

j

(
dl
2

−
j∑

i=1

[α̃l]i

)
︸ ︷︷ ︸

[α̃∗
l]j

s.t. [α̃∗
l]j > 0

λ := 1
ρ

(
dl

2 −
∑ρ

i=1[α̃l]i
)

Set [α̂l]i = max [α̃l]i + λ, 0

NUMERICAL RESULTS

��� ��� ��� ��� ��� ��� ��	 ��

�

��

��

��

��

	�

	�

�

�

�
��
��
��
��
�	

�����
��������� ������
���������� ��
��������� ���

��� ��� ��� ��� ��� ��	

�� ���

��

�	

��

�	

��

�	

��

�	

���

�
��
��
��
��
�	

������

�������� ��

���� ����! ���

• The first results show the accuracy score compared to the compression ratio: ρ =
N1/N

• The results show the accuracy score compared to the SNR of the training data:
SNR = 10log10

(
σ2
T /σ2

ϵ

)
, σ2

T and σ2
ε are the variance of the data used for train-

ing our model and the variance of the AWGN, respectively.

• For a fair comparison, the second hidden layer does not provide a coarser version
of the first one

CONCLUSIONS

• We have enabled tunable compression of the convolutional features, while learn-
ing different graph representations jointly with the GNN parameters

• The architecture scales well with the number of nodes of the input graph, extract-
ing higher level representations of the convolutional features

• Experiments illustrate the competitive performance of our architecture with re-
spect to state of the art methods

• Future developments of this research trend include: Topological Neural Net-
works, Explainability, include additional regularisations to the autoencoders’ loss

REFERENCES

[1] S. Segarra, A. G. Marques, and A. Ribeiro. Optimal graph-filter design and applications to dis-
tributed linear network operators. IEEE Transactions on Signal Processing, 65(15):4117–4131, 2017.

[2] F. Gama, A. G. Marques, G. Leus, and A. Ribeiro. Convolutional neural network architectures for
signals supported on graphs. IEEE Transactions on Signal Processing, 67(4):1034–1049, 2019.

[3] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error prop-
agation. In Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Volume 1:
Foundations, pages 318–362. MIT Press, Cambridge, MA, 1986.

[4] W. Wang and M. A. Carreira-Perpinán. Projection onto the probability simplex: An efficient algo-
rithm with a simple proof and an application. arXiv:1309.1541, 2013.

