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ABSTRACT
The aim of this work is to propose a novel architecture and training strategy for com-
press the convolutional features at multiple hidden layers, hinging on a novel end-to-end
training procedure that learns different graph representations per each layer.

Contribution: We exploit autoencoders in each layer, before applying the pointwise non-
linearity, so that the convolutional features can be tunably compressed in an information-
rich embedding. Then, since compression calls for learning a new graph representation
to be used in the following layer, we formulate a novel training strategy that jointly opti-
mizes the GNN weight parameters and the graph representations at different layers.

SIGNALS ON GRAPHS

• Let G = (V, E) be a weighted undirected graph

• The sets V = {1, 2, ..., N} and E = {ai,j}i,j∈V are the sets of vertices and edges,
respectively

• The weights ai,j ≥ 0 if there is a relationship from vertex i to vertex j, or ai,j = 0
otherwise.

• The adjacency matrix A ∈ RN×N : a collection of all weights, i.e., A = {ai,j},
i, j = 1, ..., N

• The Laplacian matrix: L = diag(1TA) − A, where diag(x) is a matrix having x
as main diagonal, and zeros elsewhere

• A graph signal (or data) is defined as a one-to-one mapping from the set V of
vertices to the set of real numbers:

x = V → R (1)

• An order K linear shift invariant graph filter (LSIGF) can be written as a K-degree
polynomial of the shift operator S, with coefficients h = [h0, ..., hK−1]

T .

• Let u and y be the input and the filtered signals, respectively, we have:

y =

K−1∑
k=0

[h]kS
ku. (2)

• The LSIGF are able to account for the local structure of the graph, requiring infor-
mation only from the K-neighborhood of each node.

• Linear and shift invariant graph filters represent a legit generalization of the con-
volution operation for signals supported on graphs [1], and are the basic building
block of GCNs.

GRAPH CONVOLUTIONAL NETWORKS

• The l-th layer of a GCN, taking as input Z̃l−1 = {z̃f
l−1}

Fl−1

f=1 and yielding as

output Z̃l = {z̃g
l }

Fl
g=1, with pointwise non-linearity σl(·), reads as: [2]:

z̃g
l := σl

( Fl−1∑
f=1

Kl−1∑
k=0

[hfg
l ]kS

kz̃f
l−1

)
, g = 1, ..., Fl. (3)

• The order Kl of the filters, the number Fl of convolutional features of the output,
and the non-linearity σl(·) are hyperparameters to be chosen at each layer

• A GCN of depth L with input data X is built as the stack of L layers defined as in
(3), where Z̃0 = X

• Based on the learning task, an additional multi layer perceptron (MLP) can be
inserted after the last layer

AUTOENCODER-AIDED GRAPH CONV NETS

• The idea is to exploit autoencoders to perform representation learning and dimen-
sionality reduction in the context of GCNs [3].

• Each layer is composed of three main stages: (i) A linear shift invariant graph
filtering stage; (ii) Autoencoder-based compression; (iii) Pointwise non-linearity

• Autoencoders are able to reduce the dimension of the hidden layers’ convolutional
features, thus learning powerful and task-oriented low-dimensional representa-
tions in a data-driven fashion.

• To this aim, the layer in (3) is modified in the following way:

z̃g
l = σl

(
fe
l

(
ug
l

)︸ ︷︷ ︸
zg

l

)
, g = 1, ..., Fl, (4)

Where z̃g
l ∈ RNl , Nl ∈ N is (generally) smaller than Nl−1, fe

l : RNl−1 → RNl is the
encoder function of an autoencoder fd

l ◦ fe
l : RNl−1 → RNl−1 associated with the l-th

layer of the GCN, and

ug
l =

Fl−1∑
f=1

Kl−1∑
k=0

[hfg
l ]kS

k
l z̃

f
l−1, g = 1, ..., Fl, (5)

where Sl denotes the shift operator associated with the l-th layer. The compressed
features at layer l are denoted as Zl = {zg

l }
Fl
g=1, and the final output of the layer is

Z̃l ∈ RNl×Fl . We call the stack of L layers as in (4) an Autoencoder-Aided Graph Con-
volutional Network (AA-GCN).

PROBLEM FORMULATION

min
{Al}Ll=1

,H,W
L({Al}Ll=1,H,W; {xi,yi}i∈T )

+ η

L∑
l=1

Fl∑
g=1

||fd
l ◦ fe

l (wl;u
g
l )− ug

l ||
2
2;→ Autoencoders’ Loss

+ β
L∑

l=1

Tr{Z̃T
l LlZ̃l};→ Promote signal smoothness

− γ
L∑

l=1

1T log(Al1);→ Penalize disconnected components

+ λ

L∑
l=1

||Al||2F ;→ Weights’ regularizer

subject to

[Al]i,i = 0 → no self-loops in the learnt graphs (6)

[Al]i,j = [Al]j,i ≥ 0, ∀ i, j, l → edge weights must be positive and symmetric

Tr{Ll} = dl, ∀ l → avoid null solutions

where λ, β, γ, η, and dl are non-negative parameters to be tuned.

HALF-VECTOR

• Since the adjacency matrices are symmetric, the number of variables of the op-
timization problem can be greatly reduced (approximatively by a factor of two)
solving for the lower triangular parts of Al for all l = 1, . . . , L

• Let αl := vech(Al) ∈ R
N(N+1)

2 be the half-vectorization of Al, obtained by
vectorizing only the lower triangular part of {Al}l

• Then, the following relations hold:

vec(Al) = Mdαl ⇐⇒ Al = vec−1(Mdαl), (7)

• vec(·) and vec−1(·) are the vectorization and the inverse vectorization operators,
respectively

• Md ∈ RN2×N(N+1)
2 is the (highly sparse) duplication matrix

All the objective terms and the constraints can be easily recast in terms of the variables
αl, for l = 1, . . . , L

ALGORITHMIC SOLUTION

Algorithm 1 : AA-GCN TRAINING
Inputs:
µ ∈ R: Learning rate.
∆µ(·): Optimizer-dependent backpropagation step.
Π(·): Projection operator on the feasible set.
E ∈ N+: Maximum number of training iterations.
{Bt}Et=1: Training dataset batches
Estimates initializations Ĥ0, Ŵ0 and {α̂l,0}l.
Loss L(·).

Outputs:
{α̂l}l: Learned graph encodings.
Ĥ: Learned graph filters weights.
Ŵ: Learned autoencoders weights.

1: function AA-GCN TRAINING(Inputs)
2: for t ∈ [1, E] do
3: Ĥt+1 = ∆µ

(
∇HL (Ĥt;Bt, {α̂l,t}l,Ŵt)

)
4: Ŵt+1 = ∆µ

(
∇WL (Ŵt;Bt, {α̂l,t}l, Ĥt)

)
5: α̂l,t+1 = Π

(
∆µ

(
∇αl

L ({α̂l,t}l,Bt,Ŵt, Ĥt)
))

, ∀l

6: return {α̂l}l = {α̂l,E}l, Ŵ = ŴE , Ĥ = ĤE

PROJECTION ALGORITHM

Algorithm 2 Euclidean projection of α̃l onto X [4]
Input:
{α̃l}l: Updated graphs parameters.
{Nl}l: Number of nodes of {Gl}l.
{dl}l: Expected degrees of nodes at layer l.

Output:
{α̂l}l: Projected updated graphs estimates.

Operator ΠX ({α̃l,t+1}l):
for l = 1, ..., L do:

Set [Al]i,i = 0;
Sort α̃l in increasing order;

ρ := max
1≤j≤dim(α̃l)

[α̃l]j +
1

j

(
dl
2

−
j∑

i=1

[α̃l]i

)
︸ ︷︷ ︸

[α̃∗
l ]j

s.t. [α̃∗
l ]j > 0

λ := 1
ρ

(
dl

2 −
∑ρ

i=1[α̃l]i
)

Set [α̂l]i = max [α̃l]i + λ, 0

NUMERICAL RESULTS
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• The first results show the accuracy score compared to the compression ratio: ρ =
N1/N

• The results show the accuracy score compared to the SNR of the training data:
SNR = 10log10

(
σ2
T /σ2

ϵ

)
, σ2

T and σ2
ε are the variance of the data used for train-

ing our model and the variance of the AWGN, respectively.

• For a fair comparison, the second hidden layer does not provide a coarser version
of the first one

CONCLUSIONS

• We have enabled tunable compression of the convolutional features, while learn-
ing different graph representations jointly with the GNN parameters

• The architecture scales well with the number of nodes of the input graph, extract-
ing higher level representations of the convolutional features

• Experiments illustrate the competitive performance of our architecture with re-
spect to state of the art methods

• Future developments of this research trend include: Topological Neural Net-
works, Explainability, include additional regularisations to the autoencoders’ loss

REFERENCES

[1] S. Segarra, A. G. Marques, and A. Ribeiro. Optimal graph-filter design and applications to dis-
tributed linear network operators. IEEE Transactions on Signal Processing, 65(15):4117–4131, 2017.

[2] F. Gama, A. G. Marques, G. Leus, and A. Ribeiro. Convolutional neural network architectures for
signals supported on graphs. IEEE Transactions on Signal Processing, 67(4):1034–1049, 2019.

[3] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error prop-
agation. In Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Volume 1:
Foundations, pages 318–362. MIT Press, Cambridge, MA, 1986.

[4] W. Wang and M. A. Carreira-Perpinán. Projection onto the probability simplex: An efficient algo-
rithm with a simple proof and an application. arXiv:1309.1541, 2013.


