


#### Spoken Language Understanding

**Definition:** As ASR systems get better, there is increasing interest of using ASR output for downstream NLP tasks.

Example: Spoken Language Understanding (Intent Prediction)



#### Applications:

- **1. Intent Classification :** Spoken Utterance  $\rightarrow$  Executable Intent
- 2. Slot Filling : User Command → Associated Entities
- **3. Emotion Recognition :** Understanding emotion behind a utterance
- 4. Dialogue Act Classification : Modeling the topic of a conversation

#### Motivation & Design

With the increase in SLU datasets and methodologies growing need

| or an open-source SLU toolkit!    |              |              |               |                 |              |
|-----------------------------------|--------------|--------------|---------------|-----------------|--------------|
| Design Features of ou             | r SLU T      | oolkit       |               |                 |              |
|                                   | Alexa[9]     | Lugosch[3]   | CoraJung [25] | SpeechBrain[26] | ESPnet-SLU   |
| BiLSTM based encoder              | ✓            | $\checkmark$ | $\checkmark$  | $\checkmark$    | $\checkmark$ |
| Transformer based encoder         |              |              |               | $\checkmark$    | $\checkmark$ |
| Conformer based encoder           |              |              |               | $\checkmark$    | $\checkmark$ |
| Classifier                        | √            |              |               | $\checkmark$    |              |
| RNN based decoder                 |              | $\checkmark$ | $\checkmark$  | $\checkmark$    | $\checkmark$ |
| Transformer based decoder         |              |              |               | $\checkmark$    | $\checkmark$ |
| Multi tasking with ASR?           |              |              |               |                 | $\checkmark$ |
| Supports multi tasking with NLU?  | ✓            |              | $\checkmark$  |                 |              |
| Pretrained ASR model?             |              | $\checkmark$ | $\checkmark$  | $\checkmark$    | $\checkmark$ |
| Pretrained NLU model?             | $\checkmark$ |              | $\checkmark$  |                 | $\checkmark$ |
| Other task?                       |              |              |               | $\checkmark$    | $\checkmark$ |
| SLU on languages besides English? |              |              |               |                 | $\checkmark$ |
| Context from previous utterances? |              |              |               |                 | $\checkmark$ |
| Tasks in pipeline manner?         |              |              |               |                 | $\checkmark$ |
| Provide pretrained model          |              | $\checkmark$ |               | $\checkmark$    | $\checkmark$ |

# **ESPnet-SLU**:

## Advancing Spoken Language Understanding through ESPnet

Siddhant Arora, Siddharth Dalmia, Pavel Denisov, Xuankai Chang, Yushi Ueda Yifan Peng, Yuekai Zhang, Sujay Kumar, Karthik Ganesan, Brian Yan Ngoc Thang Vu, Alan W Black, Shinji Watanabe siddhana@cs.cmu.edu

### At a Glance

ESPnet-SLU is a new End to End Spoken Language Understanding toolkit built on an already existing open-source speech processing toolkit ESPnet which **cover all the experiment processes** for various Spoken Language Understanding Tasks.

### **Contribution: A Unified Pipeline for SLU Model**

1. Standardize the **pipeline of building an SLU model** 2. Incorporate pretrained ASR like Hubert, Wav2vec2 and NLU

models like BERT, MPNet as feature extractors 3. Implementations of various speech processing tasks that can

be used in a **pipeline manner** 

4. Provide easy access to trained models

#### (1) Supported Tasks and Datasets

| Task | Dataset                   | Metric      | Paper Results | ESPnet-SLU |
|------|---------------------------|-------------|---------------|------------|
|      | SLURP [4]                 | Acc.        | 78.3          | 86.3       |
|      | FSC [3]                   | F1          | 98.8          | 99.6       |
|      | FSC Unseen (S) [3, 40]    | Acc.        | 94.2          | 98.6       |
|      | FSC Unseen (U) [3, 40]    | Acc.        | 88.3          | 86.4       |
|      | FSC Challenge (S) [3, 40] | Acc.        | 92.3          | 97.5       |
| IC   | FSC Challenge (U) [3, 40] | Acc.        | 78.3          | 78.5       |
|      | SNIPS [13]                | F1          | 91.7          | 91.7       |
|      | HarperValleyBank [41]     | Acc         | 45.5          | 47.1       |
|      | Grabo [12, 42]            | Acc.        | 94.5          | 97.2       |
|      | CAT-SLU MAP [27, 43]      | Acc.        | 79.8          | 78.9       |
|      | Speech Commands [44]      | Acc.        | 88.2          | 98.4       |
| SF   | SLURP [4]                 | SLU-F1      | 70.8          | 71.9       |
| DA   | Switchboard [45, 46]      | Acc.        | 68.7          | 67.5       |
| DA   | HarperValleyBank [41]     | Acc.        | 45.5          | 47.1       |
| ER   | IEMOCAP [6, 47]           | 5-fold Acc. | 67.6          | 69.4       |

Recipes for over 10 SLU corpora, for multiple languages and task types, with performance nearing or exceeding the prior SOTA.



### (2) Using ASR and NLU pretrained models for SLU

|                                 | Model                                        | IC (F1) |
|---------------------------------|----------------------------------------------|---------|
|                                 | Pipeline ASR+NLU w/ synthetic data [4]       | 74.6    |
| Baseline                        | + Additional ASR data [4]                    | 78.3    |
|                                 | E2E-SLU w/ Pretraining + synthetic data [26] | 75.1    |
| ESPnet-SLU                      | E2E-SLU w/ Conformer Encoder                 | 76.4    |
|                                 | + Pretrained ASR HuBERT [19]                 | 77.0    |
|                                 | + synthetic data                             | 86.3    |
| Ablations for<br>Pretrained ASR | + VQ-APC [22]                                | 82.1    |
|                                 | + HuBERT [19]                                | 83.3    |
|                                 | + Wav2vec2 [20]                              | 83.3    |
|                                 | + TERA [21]                                  | 83.5    |
| Ablations for                   | + MPNET [24]                                 | 82.5    |
| Pretrained NLU                  | + BERT [23]                                  | 85.7    |

Our Toolkit can compare the utility of different pretrained ASR and NLU systems as feature extractors!

### (3) ASR Multi-Tasking can improve SLU performance

|            | Model                                       | IC (% Acc) |
|------------|---------------------------------------------|------------|
| Baseline   | E2E-SLU [3]                                 | 96.6       |
|            | + Pretraining ASR [3]                       | 98.8       |
|            | Pretrained E2E-SLU + data augmentation [26] | 99.6       |
| ESPnet-SLU | Tsf. Encoder w/ Full Intent Decoding        | 93.5       |
|            | + SpecAug Data Augmentation                 | 98.9       |
|            | + ASR Multi-tasking                         | 99.4       |
|            | + Pretrained ASR HuBERT                     | 99.6       |

#### (4) Speech Enhancement Frontend Improves Noisy IC

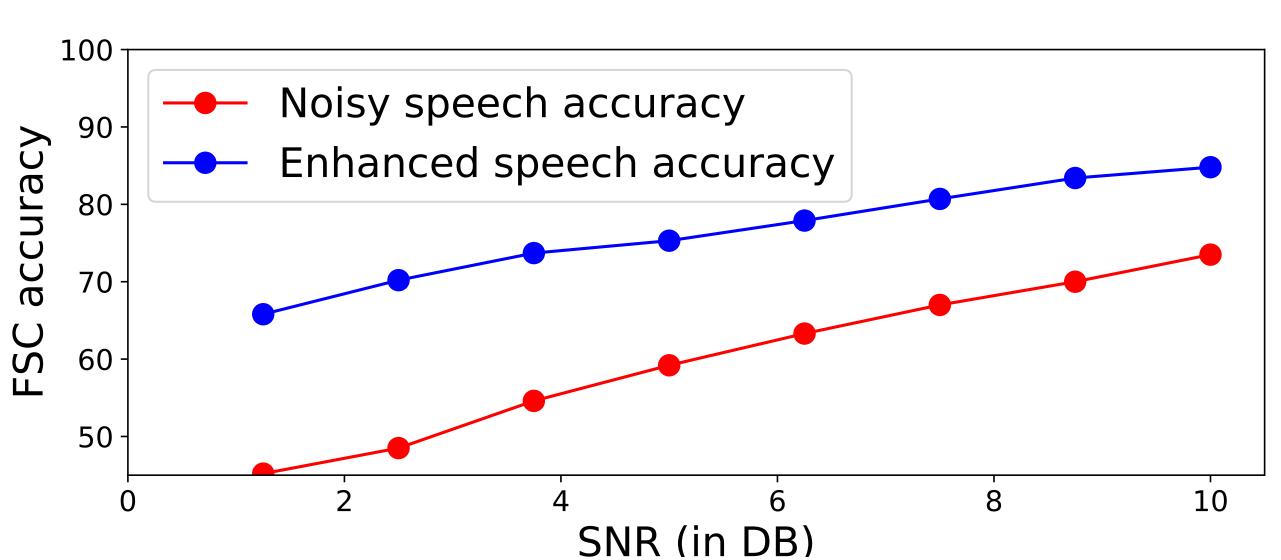



Figure: IC accuracy on the FSC dataset against the SNR of noisy speech.

