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|dentifying Edge Disconnections Using Graph Signal Processing

Motivation:

B GSP methods are based on T "
known underlying topology =

—Fa
S

EE

SR
Rl
B Topology changes may degrade NG
the performance of GSP tasks \j ’

B Edge disconnections are a
common problem, especially in
physical networks.

Example: Identifying line outages in
electrical networks, due to
environmental factors, damages,
aging, malicious attacks, etc.

Goal: use graph signals to identify
edge disconnections, where the
original underlying network is known

Shaked, Shlomit, and Tirza Routtenberg. "Identification of Edge Disconnections in Networks Based on Graph Filter
Outputs.” |IEEE Transactions on Signal and Information Processing over Networks 7 (2021): 578-594.
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Related works

B Numerous works in the literature have focused on (full) graph-topology learning.

® |nefficient for identifying only a few specific disconnections
® Suboptimal, since the nominal topology is known

B Other works detect topology changes based on graph data and not on "graph signals”

B Matched subspace detectors based on graph signals to decide which graph matches a
given dataset, but does not use information on the nature of the change [1], [2]

B Edge exclusion tests for general graphical models [3]

B Laplacian learning in Gaussian Markov random field models with known connectivity [4]

[1] C. Hu, J. Cheng, K. A. Sepulcre, G. E. Fakhri, Y. M. Lu, and K. Li, “Matched signal detection on graphs: Theory and

application to brain imaging data classification”, 2016.

[2] E. Isufi, A. S. U. Mahabir and G. Leus, “Blind Graph Topology Change Detection”, 2018

[3] K. Tugnait, “Edge exclusion tests for graphical model selection: Complex Gaussian vectors and time series”, 2019

[4] H. Egilmez, E. Pavez, and A. Ortega, “Graph Learning from Data under Structural and Laplacian Constraints”, 2017
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Background: GSP Definitions

Given an undirected, connected, weighted graph G = {V,&, W }:
B V is set of vertices, where N = |V| and £ is a set of edges.

B W c RY*N is the non-negative weighted adjacency matrix of the graph.
If (i,7) € £, the entry W ; > 0 represents the weight of the edge; otherwise, W; ; = 0.

B The Laplacian matrix is L £ diag(W1) — W, where each entry satisfies
O——

. 3 @ 18 -3 0 -7 -8
Zk: (i,k)e& Wik, i=j,1€V / \4/ —03 _81 —31 :42; 8
Lij=q-Wij, (i,j) €€ @*@ e

0, otherwise 8\@% Y

B The singular value decomposition (SVD) is given by L = UMA D) (U(L))T.
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Background: GSP Definitions

B A graph signal is a vector measured over the vertices, a: V — RV,
B The graph fourier transform (GFT) w.r.t L is alt) = (U(L))Ta.
B The inverse GFT (IGFT) w.rt L is a = ULa®),

B The smoothness or Dirichlet energy is measured by

1
QL(a) = 5 Z Wm‘ [ai — aj]2 = aTLa.
(i,7)€E

Smooth graph signals are signals with “small” Dirichlet energy.
Intuitively, a smooth graph signal is considered to be a “good match” with the graph if
the signal values are close to their neighbors’ values.
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Background: Graph Filter

Filtering in graph Fourier space can be represented by

alt) = diag(((AY), ..., h(A) )&l

Then,the graph filter is a linear operator relates to input-output aq, = h(L)aj,, where
(L) £ UTdiag((h(AM), ..., h A7) (UE) T,
|91

25

h(L)
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Smooth Graph Filter: E[Qr(aou)] < E[QL(ai)]

larization

Graph Filter h(\) For a;, ~ N (0,1)
: : -+ A
Gaussian Markov random field (GMRF) 2 apu ~ N(0, L)
with a Laplacian precision matrix 0 A=0
. . . 1
Regularized Laplacian by Tikhonov Regu- T an a>0 oyt ~ N (0, (I+ aL)*2)

Heat Diffusion Kernel

exp (—TA), 7>0

aout ~ N(0,exp (—27L))
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2. Measurements Model
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Measurement Model

B We consider the measurement model as an output of a smooth graph filter:
yim| = h(L)x[m| +w[m|, m=1... M.

B The log-likelihood of the augmented output vector of M time samples,
y & [y, y T M s

M M
g (i) = = g (2 Vo20(0) + 311.) ~ S Te((022(L) + o30S, ).

where the sample covariance matrix

L1 & .
Sy £ = 3 ylmly” .

m=1

= the graph filter, h(L), “colors” the input graph signal using the network connectivity.
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Problem formulation

Identification of edge disconnections:
Hp: L=L® k=01, K

based on the graph signals y, where

B L is the Laplacian of the original,

known topology (set of edges: &),

B L® is the Laplacian matrix after
disconnections at the edges in
¢k c e

11 -3 0 0 =8
-3 8 -1-40
0 -13 -20 =
0 —4-29 -3
-8 0 0 =311

LH 20 Y g

E(k)

) 2 {L(O):|ij (eie] +eje —ejel —eie]).

corresponds to a single-edge disconnection at
(1,7) € &.

~~

L(k)
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3. Identification of edge disconnections
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Maximum likelihood decision rule

The maximum likelihood decision rule for this problem is given by

I, (k)
osk<k log f(y;LO)  oShek

where

| (y|L*) £ Tr<<(a§h2(L(0>) +o21)' — (62R2(LW) + ﬁl)*) sy> - data term

22 (L)) 4021
B p(L*) 2 og <Z§hQEL(0>§+Z&,II> - penalty term

mS, A ﬁ Z%:l y[m]y” [m] - sample covariance matrix

=The problem of testing structured covariance matrix of random Gaussian vectors
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Remark 1: Penalty function interpretation

proposition: Consider two connected
graphs, G*1) and G*2) with the Lapla-
cian matrices, L*1) and L*2), respec-
tively, and assume:

C.1) C(¥2) is a proper subset of C*1) j.e.
Ck2) — clk1),

C.2) The graph filter, h()\), is a mono-
tonic decreasing function of A\ for any
A > 0.

C.3) The covariance matrices are non-
singular matrices.

Then,

XBA 19995

=-A larger penalty for more edge

(k2)y < (k1)
p(LY?) < p(L¥). disconnections
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Remark 2: The sufficient statistics

The kth likelihood can be written in the graph spectral domain as

(k) (0)
Wy _ 92 (v ROn ) (LK) RO ) (L)
l(Y|L ) - 2 D) wn - (0) n )
Ow \ ;7 02 + a,%hQ()\q(q,L )) o2 + 0')2(]12()\,(11‘ ))

where the sufficient statistics for the identification are the graph-frequency energy levels, i.e.

M
P@O) & % S (FYmI],)? n=1,...,N, =0,k

m=1

=the maximum likelihood decision rule only requires the evaluation of the N K scalars
= it can be shown that is governed by the low-graph frequencies
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Remark 3: GMRF model with a Laplacian precision

In this case, the kth likelihood term satisfies

M
1 0
LY =~ D0 L) D (wilm] — ylm))”
proposition:  Consider a connected IS c®
graph, g(’ﬂ, with a Laplacian matrix,
L*) . Then, for the noiseless GMRF 2226

model with a Laplacian precision matrix,
the kth term

I(y|LK)) - pL®)
N—_—— N——

measurements + 2nd-order statistics  2nd-order statistics

is only a function of the vertices in S*). G is obtained by removing the edges in
C*) = {(1,4),(4,6),(3,5)}, associated with
the vertices in S = {1,3,4,5,6}.
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Computational complexity

B Number of hypotheses in the general case:
Tmax
€]
K=y (),
r=1
where ryax is the maximum number of possible edge disconnections

B The calculation of I(y|L®*)) and p(L®)) requires an inversion of N x N matrix

B The computational complexity of the maximum likelihood decision rule grows
exponentially with the graph size and is impractical for large networks
B We develop efficient low-complexity methods based on:
® Greedy approach
® Local properties of smooth graph filters
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4. Greedy approaches for identifying edge disconnections
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Greedy approach

Algorithm 1: Greedy identification
e Input: Sy, L, &, 02, 0%, h(-), Optional: ryax.

~

® Qutput: Estimated edge disconnections set, C.
Initialize C° = (), €0 = £, L0 = L@ and [ =0.
Find the maximal edge, k € &, by

k= argmax I(y|L! — E®)) — p(L! — E®),
k=(i,j)e&!

if I(yL!—E®)_ oL —E®) > 0 then
Update C1+1 = CLU {k}, £ = EN\ {k}, L =L —E® and 1« 1+ 1
if |C'| = rmax then
| Return: C..
Repeat to step 1.

Return: C'.
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Neighboring strategy

B-local maximum likelihood
decision rule E=8
® For a given candidate edge,
(4,7), we calculate the likelihood
ratio of the measurements in the
B-neighborhood of ¢ and 7,
N (i, B) UN(j, B), where
N (i, B) is the set of vertices
connected to vertex ¢ by a path
of at most [ edges. -
® For each iteration, building a The tunable parameter 5 provides a
new set of the suspicious edges trade-off between the identification accuracy
for the next iteration. and the computation cost.

B=1

B=3
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Computational complexity

ML rule Greedy Greedy + neigh-
boring strategy
# Likelihood ratio calculations | S 7 () Tmax X | €] Tmax X €|
Matrix inversion* O(N?) O(N?) O(IN((i, ), B)?)
Searching edge set size* S rmax (E') |E] 10| < |€]

*For sparse graphs, where |€| < W
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5. Simulations
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Simulations #1: synthetic data

B Smooth graph filters

B The initial graph was generated by using the Watts-Strogatz small-world graph model,
with N = 50 vertices, mean degree of d = 2, and || = 100

B The elements of W(? are independent, uniformly distributed weights in [0.1, 5]

B Topology change is obtained by removing an arbitrary set of r edges from £
B Comparison with

Blind simple-MSD (BSMD) detector [1, 2]

Smoothness detector

GGM-GLRT: uses the sample covariance matrix of the 1st-order neighbors of the edges [3]
Combinatorial graph Laplacian (CGL) method [4]

Constrained CGL (CCGL) method: CGL + information on the initial Laplacian matrix, L(®)

[1] C. Hu, J. Cheng, K. A. Sepulcre, G. E. Fakhri, Y. M. Lu, and K. Li, “Matched signal detection on graphs: Theory and

application to brain imaging data classification”, 2016.

[2] E. Isufi, A. S. U. Mahabir and G. Leus, “Blind Graph Topology Change Detection”, 2018

[3] K. Tugnait, “Edge exclusion tests for graphical model selection: Complex Gaussian vectors and time series”, 2019

[4] H. Egilmez, E. Pavez, and A. Ortega, “Graph Learning from Data under Structural and Laplacian Constraints”, 2017
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probability of false alarm probability of false alarm probability of false alarm

Receiver operating characteristic (ROC) curves of edge disconnection detection by the greedy algorithm,

B = 0, 1-neighbors greedy algorithm, smoothness detector, and BMSD for: the GMRF (left), the regularized
Laplacian (middle), and the heat diffusion (right) filters, with noise variance o2, = 0.5, M = 100 edges, and
r = 5 potential disconnections.
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|dentification performance

o o
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The F-score measure for the GMRF (left), the regularized Laplacian (middle), and the heat diffusion (right)
filters versus SNR for the greedy algorithm, 8 = 0, 1-neighbors greedy algorithm, CGL method, CCGL method,
and the GGM-GLRT method with M = 1,000 and r = 5.

The F-score metric takes values between 0 and 1, where 1 means perfect identification.
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“|- B -Full Greedy

—#— Greedy 0 = 1| |
Greedy =0
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.o CCGL
GGM-GLRT

3 i
0 10! 102 10°

N

Run-time of the different methods for o2, = 0.1, M = 100,000, r = 2, and L = 100
21/23



Simulations #2: ldentifying outages in power system dataset

B The vertices and the edges denote the buses (generators or loads),

lines,

Identifying outages in power system: ROC
curves (left) of edge disconnections detector
and the F-score measure (right) versus SNR
by assuming the GMREF filter.

and the transmission lines between these buses, respectively. The
branch susceptances determine the weights of the graph edges.

B We assume Phasor measurement units PMUs in the considered
system that acquire noisy measurements of the voltage phases at
all buses, and |v,| =1

B We tested random combinations of outages at the transmission

F-score

probability of detection

probability of false alarm



6. Conclusions
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Conclusions

® We propose identifying edge disconnections in networks based on a graph filter model.

Interpretations of the developed maximum likelihood decision rule:

® Based on graph energy levels in the graph spectral domain

® Has a penalty on models with a larger number of disconnections

® A local smoothness detector for the noiseless GMRF filter with a Laplacian precision
® We propose two greedy algorithms that

® converge to maximum likelihood decision rule for the noiseless GMREF filter

® outperform state-of-the-art methods on the tested scenarios in terms of detection and

identification performance, and computational complexity

® The neighboring strategy is based on localization and smoothness properties

® provide a good trade-off between performance and complexity
® Future research directions include

1. Extension for “blind" scenarios with unknown graph filters

2. Dynamically change detection

3. Other typical topology changes
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