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Identifying Edge Disconnections Using Graph Signal Processing

Motivation:

■ GSP methods are based on
known underlying topology

■ Topology changes may degrade
the performance of GSP tasks

■ Edge disconnections are a
common problem, especially in
physical networks.

Goal: use graph signals to identify
edge disconnections, where the
original underlying network is known

Example: Identifying line outages in
electrical networks, due to
environmental factors, damages,
aging, malicious attacks, etc.

Shaked, Shlomit, and Tirza Routtenberg. ”Identification of Edge Disconnections in Networks Based on Graph Filter
Outputs.” IEEE Transactions on Signal and Information Processing over Networks 7 (2021): 578-594.
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Related works

■ Numerous works in the literature have focused on (full) graph-topology learning.
• Inefficient for identifying only a few specific disconnections
• Suboptimal, since the nominal topology is known

■ Other works detect topology changes based on graph data and not on ”graph signals”

■ Matched subspace detectors based on graph signals to decide which graph matches a
given dataset, but does not use information on the nature of the change [1], [2]

■ Edge exclusion tests for general graphical models [3]

■ Laplacian learning in Gaussian Markov random field models with known connectivity [4]

[1] C. Hu, J. Cheng, K. A. Sepulcre, G. E. Fakhri, Y. M. Lu, and K. Li, “Matched signal detection on graphs: Theory and
application to brain imaging data classification”, 2016.
[2] E. Isufi, A. S. U. Mahabir and G. Leus, “Blind Graph Topology Change Detection”, 2018
[3] K. Tugnait, “Edge exclusion tests for graphical model selection: Complex Gaussian vectors and time series”, 2019
[4] H. Egilmez, E. Pavez, and A. Ortega, “Graph Learning from Data under Structural and Laplacian Constraints”, 2017
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Background: GSP Definitions

Given an undirected, connected, weighted graph G = {V, E ,W}:
■ V is set of vertices, where N ≜ |V| and E is a set of edges.

■ W ∈ RN×N is the non-negative weighted adjacency matrix of the graph.
If (i, j) ∈ E , the entry Wi,j > 0 represents the weight of the edge; otherwise, Wi,j = 0.

■ The Laplacian matrix is L ≜ diag(W1)−W, where each entry satisfies

Li,j =


∑

k: (i,k)∈E Wi,k , i = j , i ∈ V
−Wi,j , (i, j) ∈ E
0 , otherwise

( 18 −3 0 −7 −8
−3 8 −1 −4 0
0 −1 3 −2 0
−7 −4 −2 16 −3
−8 0 0 −3 11

)
︸ ︷︷ ︸

L

■ The singular value decomposition (SVD) is given by L = U(L)Λ(L)
(
U(L)

)⊤
.
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Background: GSP Definitions

■ A graph signal is a vector measured over the vertices, a : V → RN .

■ The graph fourier transform (GFT) w.r.t L is ã(L) =
(
U(L)

)⊤
a.

■ The inverse GFT (IGFT) w.r.t L is a = U(L)ã(L).

■ The smoothness or Dirichlet energy is measured by

QL(a) ≜
1

2

∑
(i,j)∈E

Wi,j [ai − aj ]
2 = a⊤La.

Smooth graph signals are signals with “small” Dirichlet energy.
Intuitively, a smooth graph signal is considered to be a “good match” with the graph if
the signal values are close to their neighbors’ values.
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Background: Graph Filter

Filtering in graph Fourier space can be represented by

ã
(L)
out = diag

(
[h(λ

(L)
1 ), . . . , h(λ

(L)
N )]T

)
ã
(L)
in .

Then,the graph filter is a linear operator relates to input-output aout = h(L)ain, where

h(L) ≜ U(L)diag
(
[h(λ

(L)
1 ), . . . , h(λ

(L)
N )]T

)(
U(L)

)T
.
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Smooth Graph Filter: E[QL(aout)] < E[QL(ain)]

Graph Filter h(λ) For ain ∼ N (0, I)

Gaussian Markov random field (GMRF)
with a Laplacian precision matrix

{
1√
λ

λ ̸= 0

0 λ = 0
aout ∼ N (0,L†)

Regularized Laplacian by Tikhonov Regu-
larization

1

1 + αλ
, α > 0 aout ∼ N (0, (I+ αL)−2)

Heat Diffusion Kernel exp (−τλ), τ > 0 aout ∼ N (0, exp (−2τL))
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Measurement Model

■ We consider the measurement model as an output of a smooth graph filter:

y[m] = h(L)x[m] +w[m], m = 1 . . .M.

■ The log-likelihood of the augmented output vector of M time samples,
y ≜ [yT [1], . . . ,yT [M ]]T , is

log f(y;L) =− M

2
log
(
(2π)N |σ2xh2(L) + σ2wI|+

)
− M

2
Tr

((
σ2xh

2(L) + σ2wI
)†
Sy

)
,

where the sample covariance matrix

Sy ≜
1

M

M∑
m=1

y[m]yT [m].

⇒ the graph filter, h(L), “colors” the input graph signal using the network connectivity.
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Problem formulation
Identification of edge disconnections:

Hk : L = L(k), k = 0, 1, . . . ,K

based on the graph signals y, where

■ L(0) is the Laplacian of the original,
known topology (set of edges: E),

■ L(k) is the Laplacian matrix after
disconnections at the edges in
C(k) ⊂ E .

L(k) △
= L(0) −

∑
(i,j)∈C(k)

E(i,j)

︸ ︷︷ ︸
E(k)

E(i,j) ≜
[
L(0)

]
i,j

(
eie

T
j + eje

T
i − eje

T
j − eie

T
i

)
.

corresponds to a single-edge disconnection at
(i, j) ∈ E .

( 11 −3 0 0 −8
−3 8 −1 −4 0
0 −1 3 −2 0
0 −4 −2 9 −3
−8 0 0 −3 11

)
︸ ︷︷ ︸

L(k)

=

( 18 −3 0 −7 −8
−3 8 −1 −4 0
0 −1 3 −2 0
−7 −4 −2 16 −3
−8 0 0 −3 11

)
︸ ︷︷ ︸

L(0)

−

(
7 0 0 −7 0
0 0 0 0 0
0 0 0 0 0
−7 0 0 7 0
0 0 0 0 0

)
︸ ︷︷ ︸

E(k)
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Maximum likelihood decision rule

The maximum likelihood decision rule for this problem is given by

T (y) = argmax
0≤k≤K

log f(y;L(k))

log f(y;L(0))
= argmax

0≤k≤K
l(y|L(k))− ρ(L(k)).

where

■ l(y|L(k)) ≜ Tr

(((
σ2xh

2(L(0)) + σ2wI
)† − (σ2xh2(L(k)) + σ2wI

)†)
Sy

)
- data term

■ ρ(L(k)) ≜ log

(
|σ2

xh
2(L(k))+σ2

wI|+
|σ2

xh
2(L(0))+σ2

wI|+

)
- penalty term

■ Sy ≜ 1
M

∑M
m=1 y[m]yT [m] - sample covariance matrix

⇒The problem of testing structured covariance matrix of random Gaussian vectors
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Remark 1: Penalty function interpretation

proposition: Consider two connected
graphs, G(k1) and G(k2), with the Lapla-
cian matrices, L(k1) and L(k2), respec-
tively, and assume:
C.1) C(k2) is a proper subset of C(k1), i.e.
C(k2) ⊂ C(k1).
C.2) The graph filter, h(λ), is a mono-
tonic decreasing function of λ for any
λ > 0.
C.3) The covariance matrices are non-
singular matrices.
Then,

ρ(L(k2)) ≤ ρ(L(k1)).
⇒A larger penalty for more edge
disconnections
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Remark 2: The sufficient statistics

The kth likelihood can be written in the graph spectral domain as

l(y|L(k)) =
σ2x
σ2w

( N∑
n=1

h2(λ
(L(k))
n )

σ2w + σ2xh
2(λ

(L(k))
n )

ψ(L(k))
n − h2(λ

(L(0))
n )

σ2w + σ2xh
2(λ

(L(0))
n )

ψ(L(0))
n

)
,

where the sufficient statistics for the identification are the graph-frequency energy levels, i.e.

ψ(L(l))
n ≜

1

M

M∑
m=1

([
ỹ(L(l))[m]

]
n

)2
n = 1, . . . , N, l = 0, k.

⇒the maximum likelihood decision rule only requires the evaluation of the NK scalars
⇒ it can be shown that is governed by the low-graph frequencies
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Remark 3: GMRF model with a Laplacian precision

proposition: Consider a connected
graph, G(k), with a Laplacian matrix,
L(k). Then, for the noiseless GMRF
model with a Laplacian precision matrix,
the kth term

l(y|L(k))︸ ︷︷ ︸
measurements + 2nd-order statistics

− ρ(L(k))︸ ︷︷ ︸
2nd-order statistics

is only a function of the vertices in S(k).

In this case, the kth likelihood term satisfies

l(y|L(k)) = − 1

σ2xM

∑
(i,j)∈ C(k)

L
(0)
i,j

M∑
m=1

(yi[m]− yj [m])2

G(k) is obtained by removing the edges in
C(k) = {(1, 4), (4, 6), (3, 5)}, associated with
the vertices in S(k) = {1, 3, 4, 5, 6}.
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Computational complexity

■ Number of hypotheses in the general case:

K =

rmax∑
r=1

(
|E|
r

)
,

where rmax is the maximum number of possible edge disconnections

■ The calculation of l(y|L(k)) and ρ(L(k)) requires an inversion of N ×N matrix

■ The computational complexity of the maximum likelihood decision rule grows
exponentially with the graph size and is impractical for large networks

■ We develop efficient low-complexity methods based on:
• Greedy approach
• Local properties of smooth graph filters
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Greedy approach

Algorithm 1: Greedy identification

• Input: Sy, L
(0), E , σ2x, σ2w, h(·), Optional: rmax.

• Output: Estimated edge disconnections set, Ĉ.
Initialize Ĉ0 = ∅, Ê0 = E , L̂0 = L(0), and l = 0.
Find the maximal edge, k̂ ∈ Ê l, by

k̂ = argmax
k=(i,j)∈Êl

l(y|L̂l −E(k))− ρ(L̂l −E(k)),

if l(y|L̂l −E(k̂))− ρ(L̂l −E(k̂)) > 0 then

Update Ĉl+1 = Ĉl ∪ {k̂}, Ê l+1 = Ê l \ {k̂}, L̂l+1 = L̂l −E(k̂), and l← l + 1
if |Ĉl| = rmax then

Return: Ĉl.
Repeat to step 1.

Return: Ĉl.
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Neighboring strategy

β-local maximum likelihood
decision rule

• For a given candidate edge,
(i, j), we calculate the likelihood
ratio of the measurements in the
β-neighborhood of i and j,
N (i, β)

⋃
N (j, β), where

N (i, β) is the set of vertices
connected to vertex i by a path
of at most β edges.

• For each iteration, building a
new set of the suspicious edges
for the next iteration.

⇒
The tunable parameter β provides a
trade-off between the identification accuracy
and the computation cost.
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Computational complexity

ML rule Greedy Greedy + neigh-
boring strategy

# Likelihood ratio calculations
∑rmax

r=1

(|E|
r

)
rmax × |E| rmax × |E|

Matrix inversion* O(N3) O(N3) O(|N ((i, j), β)|3)
Searching edge set size*

∑rmax
r=1

(|E|
r

)
|E| |Ê(l)| ≪ |E|

*For sparse graphs, where |E| ≪ N(N−1)
2 .
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Simulations #1: synthetic data

■ Smooth graph filters

■ The initial graph was generated by using the Watts-Strogatz small-world graph model,
with N = 50 vertices, mean degree of d = 2, and |E| = 100

■ The elements of W(0) are independent, uniformly distributed weights in [0.1, 5]

■ Topology change is obtained by removing an arbitrary set of r edges from E
■ Comparison with

• Blind simple-MSD (BSMD) detector [1, 2]
• Smoothness detector
• GGM-GLRT: uses the sample covariance matrix of the 1st-order neighbors of the edges [3]
• Combinatorial graph Laplacian (CGL) method [4]
• Constrained CGL (CCGL) method: CGL + information on the initial Laplacian matrix, L(0)

[1] C. Hu, J. Cheng, K. A. Sepulcre, G. E. Fakhri, Y. M. Lu, and K. Li, “Matched signal detection on graphs: Theory and
application to brain imaging data classification”, 2016.
[2] E. Isufi, A. S. U. Mahabir and G. Leus, “Blind Graph Topology Change Detection”, 2018
[3] K. Tugnait, “Edge exclusion tests for graphical model selection: Complex Gaussian vectors and time series”, 2019
[4] H. Egilmez, E. Pavez, and A. Ortega, “Graph Learning from Data under Structural and Laplacian Constraints”, 2017
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Detection performance
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Receiver operating characteristic (ROC) curves of edge disconnection detection by the greedy algorithm,
β = 0, 1-neighbors greedy algorithm, smoothness detector, and BMSD for: the GMRF (left), the regularized
Laplacian (middle), and the heat diffusion (right) filters, with noise variance σ2

w = 0.5, M = 100 edges, and
r = 5 potential disconnections.
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Identification performance
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The F-score measure for the GMRF (left), the regularized Laplacian (middle), and the heat diffusion (right)
filters versus SNR for the greedy algorithm, β = 0, 1-neighbors greedy algorithm, CGL method, CCGL method,
and the GGM-GLRT method with M = 1, 000 and r = 5.

The F-score metric takes values between 0 and 1, where 1 means perfect identification.

20 / 23



Run-time
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Simulations #2: Identifying outages in power system dataset

■ The vertices and the edges denote the buses (generators or loads),

and the transmission lines between these buses, respectively. The

branch susceptances determine the weights of the graph edges.

■ We assume Phasor measurement units PMUs in the considered

system that acquire noisy measurements of the voltage phases at

all buses, and |vn| = 1

■ We tested random combinations of outages at the transmission

lines,

Identifying outages in power system: ROC

curves (left) of edge disconnections detector

and the F-score measure (right) versus SNR

by assuming the GMRF filter.
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Conclusions

• We propose identifying edge disconnections in networks based on a graph filter model.
• Interpretations of the developed maximum likelihood decision rule:

• Based on graph energy levels in the graph spectral domain
• Has a penalty on models with a larger number of disconnections
• A local smoothness detector for the noiseless GMRF filter with a Laplacian precision

• We propose two greedy algorithms that
• converge to maximum likelihood decision rule for the noiseless GMRF filter
• outperform state-of-the-art methods on the tested scenarios in terms of detection and

identification performance, and computational complexity
• The neighboring strategy is based on localization and smoothness properties
• provide a good trade-off between performance and complexity

• Future research directions include

1. Extension for “blind” scenarios with unknown graph filters
2. Dynamically change detection
3. Other typical topology changes
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