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Background

@ Power grid system is a lifeline
networks but fragile when
interruptions occur.

@ Have an online prediction for
power grid stability after fault
happens.

o Traditional physical simulation
approach:

e time-consuming
o details of fault information Power grid system with a fault on

e not suitable for online line;_3.
assessment
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Related work

@ Data driven solutions
e predict stability by binary indicator
e estimate stability margin
e not enough

o Classical signal processing: Prony's Method
o linear time-invariant filters
o limited to response with a rational function
e require manual observation and parameter choice
e not robust

@ Improved with spatial coupling: 1D-CNN
o deep feature extraction

@ Our approach: Glassoformer

e equip encoder-decoder with attentions
e propose efficient sparse self-attention to reduce the cost
e outperforms existing methods
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Overview of the model

@ Based on encoder-decoder
structure.

o Adjusted embedding layers
for post-fault prediction
problems.

o Different inputs for encoder
and decoder.
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Embedding
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@ In transient prediction, full
period time stamps (x°) and
temporal time-series features
X are required.

@ Input embedding:

e positional embedding

e 1D convolution
@ Output embedding: w \
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Encoder and Decoder
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@ Decoder:
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Self-attention

@ long-range dependency and enable parallel processing

o Self-attention transforms input sequence X € RN-Dx into an output
sequence V by two steps:
e Step 1: Project input into 3 matrices:

Q= W(;XT;K: W;XT,V: WJ)N(T,

o Step 2: Compute output with softmax:

V = softmax (7
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Query sparsification

o For long sequence, the
computational and memory cost e
are both O( N2) Multi-Heads Group Lasso Attention Block
. n-heads

[ Grown |

I Group

o Efficient transformers have been
proposed: Informer, cluster
transformer, etc.

Group,

Group Sparsed

@ Our approach: Query
sparsification
o apply group Lasso (GLasso)
penalty to sparsify W

o reduce number of nonzero Ny
rows of @ = WJ X T to O(1)
(row-wise group sparsity) Glassoformer attention block

e complexity of AV goes down
to O(N)
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Algorithm

@ Propose Relaxed Group-wise Splitting Method (RGSM) to achieve
row-wise sparsity in query matrix Q:

o Consider group lasso penalty ||-|| ¢, the loss is:
L(0, Wq) = £(0, Wq) + A [[Wgll g,
@ Solve proximal problem in closed-form:

*_

. 1 2
Y, = arg n;”" Myell, + Z > 1¥e,i — wgill3
£ icly
here WQ:{ 7Wg’...}

@ Obtain GLasso proximal operator:

*_

yg = Proxgp \(wg) = wg max(||wgll, — A, 0)/[|wgl|, -
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Algorithm

RGSM algorithm

Update for each iteration:
u; = Prox,(w;), forg=1,...,N

(6, W) = (0, w)" —n V(0" w") — (0, n B(w* — u))
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Convergence

L 1
La(vih uf) < Lp(vF, uf) + (”’ LB ) vttt — vt

2 2

If f is coercive (f bounded implies that of its independent variables, true
when standard weight decay is present in network training) and the
learning rate n < 2/ + Lip, then Lg(v®, u®) decreases monotonically in t,
and (v, u") converges sub-sequentially to a limit point (v, d), from which
w is extracted to speed up inference.
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Experimental setting

e Dataset: Simulation of power system in New York/New England

16 generators 68 buses

2248 fault events, and each 10 seconds signal
voltage from bus and current from line

graph structure of buses and lines

@ Experiment details:
o baseline: 1D-CNN, Informer, Prony's method, Transformer with lasso
o platform: GTX-1080Ti
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Result

Models GLasso Informer Lasso 1DCNN Prony
| MSE(x107°) 3.189 3.662 3532 8.014 -
MAE(x1073) 2.374 2.684 2543  6.087 -
" MSE(x107°) 6.115 6.599 6501 17.21  397.6
MAE(x1073) 3.520 3.877 3.611 9.264 473

Table: Voltage prediction error comparison.

I (11): input data with (without) neighbor voltage and current features.
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Result
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Result

Visualization of sparsity patterns (black pixel) in Q. GLassoformer obtains
a better group (row-wise) sparsity.
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Result

Our network: Glassoformer is faster and sparser.

Models GLasso Lasso Informer 1DCNN

Num of Params (M)  5.827 5.707  7.257 0.706
Inference Time (ms)  18.98  14.92 29.76 0.5969

Table 1: Comparison of model parameter size (M: million), and inference time
(ms: millisecond) on GTX-1080Ti.

Models GLasso Informer Lasso

Pruning rate ! (%) 19.09 4.220 2.674
Training time  (second)  9.215 8.975  8.987

Table 2: Pruning rate and training time comparison.

L. fraction of zero query vectors (threshold = 1e-5); 2. time per epoch
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The End
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