IEEE ICASSP 2022

Meta Talk: Learning to Data-Efficiently Generate Audio-Driven Lip-Synchronized Talking Face with High Definition

Yuhan Zhang¹*, Weihua He¹ *, Minglei Li², Kun Tian¹, Ziyang Zhang^{1#}, Jie Cheng¹, Yaoyuan Wang^{1#}, Jianxing Liao¹

¹ Advanced Computing and Storage Lab, Huawei Technologies Co. Ltd., China

² Language & Speech Innovation Lab, Huawei Technologies Co. Ltd., China

Introduction

Audio-Driven Talking Face

Audio

Talking face video

Motivation

- AudioDVP [1]: an audio-driven 3D talking face video generation model
- Wav2Lip [2]: a 2D speech-to-lip model

	Method	Training data	Definition of generated face	Lip-sync of generated video
-	AudioDVP	3 min high-definition video	Limited-definition (256x256)	limited
	AudioDVP	5~6h high-definition video	Limited-definition (256x256)	\checkmark
	Wav2Lip	Over 30h low-definition video	Low-definition (96x96)	\checkmark
<	Our method	3 min high-definition video	High-definition (1024x1024)	\checkmark

[1] XinWen, MiaoWang, Christian Richardt, Ze-Yin Chen, and Shi-Min Hu, "Photorealistic audio-driven video portraits," IEEE Transactions on Visualization and Computer Graphics, vol. 26, no. 12, pp. 3457–3466, 2020.

[2] K R Prajwal, Rudrabha Mukhopadhyay, Vinay P. Namboodiri, and C.V. Jawahar, "A lip sync expert is all you need for speech to lip generation in the wild," in Proceedings of the 28th ACM International Conference on Multimedia, New York, NY, USA, 2020, MM '20, p. 484–492, Association for Computing Machinery.

Framework

Experiment

using audio in the wild to compare our method with ATVG, Wav2lip, AudioDVP and MakeIttalk

AudioDVP

Ours

Source audio frames

ATVG

Wav2Lip AudioDVP

Ours

Makelttalk

Table 2. Quantitative evaluation on the test sets of videos. For LSE-D and FID the lower the better, and the higher the better for LSE-C and SSIM.

	Methods	ATVG	Wav2Lip	AudioDVP	MakeIttalk	Ours
	LSE-D↓	9.114	7.756	10.195	9.977	8.636
	LSE-C↑	5.653	7.555	4.138	4.716	6.060
Α	FID↓	21.572	11.847	9.437	23.158	6.734
	SSIM ↑	0.5298	0.6072	0.9490	0.5526	0.9832
	LSE-D↓	10.400	7.540	14.978	11.911	9.878
	LSE-C↑	5.234	6.066	0.238	2.135	4.963
В	FID↓	19.983	13.120	10.234	19.315	7.065
	SSIM ↑	0.6721	0.6049	0.9645	0.6238	0.9896
	LSE-D↓	10.581	6.637	11.712	16.170	9.530
	LSE-C↑	5.122	8.951	3.322	0.06	6.141
С	FID↓	19.311	11.154	9.677	19.46	6.498
	SSIM ↑	0.350	0.5647	0.9316	0.4781	0.9744
	LSE-D↓	10.005	6.546	11.804	11.444	9.091
	LSE-C↑	5.808	9.023	2.884	3.725	6.155
D	FID↓	17.969	12.485	9.076	19.93	6.881
	SSIM ↑	0.5682	0.5766	0.9439	0.4705	0.9875
	LSE-D↓	12.506	6.571	11.713	14.339	9.831
	LSE-C↑	2.734	8.989	3.063	1.018	5.493
Е	FID↓	18.697	11.185	9.523	19.502	7.131
	SSIM ↑	0.5716	0.6482	0.9237	0.4872	0.9867
	LSE-D↓	9.567	6.343	9.953	11.167	8.817
	LSE-C↑	5.803	9.314	4.794	4.277	5.841
F	FID↓	20.839	13.457	11.348	17.746	6.775
	SSIM ↑	0.5321	0.7015	0.9577	0.4764	0.9894
	LSE-D↓	9.687	6.013	13.332	8.831	8.880
	LSE-C↑	7.261	10.237	2.074	6.795	7.539
G	FID↓	21.894	14.94	10.795	23.880	6.579
_	SSIM ↑	0.5794	0.6102	0.9102	0.7736	0.9866

Table 3. Ablation study on the test sets of videos.						
Video	LSE-D	LSE-C	FID	SSIM		
Baseline	11.955	2.930	10.007	0.940		
Our A2E	9.578	6.343	9.264	0.952		
High definition	11.834	3.427	7.449	0.976		
Ours	9.237	6.027	6.804	0.985		

Table 4. User study results

_

Method	Average	\rightarrow Rating of realistic and definition \rightarrow					synchronization
Wiethou		1	2	3	4	5	'sync'
ATVG	1.98	32.1%	42.9%	19.6%	5.4%	0.0%	73.2%
Wav2Lip	3.23	0.0%	26.8%	30.4%	35.7%	7.1%	76.7%
AudioDVP	3.16	1.8%	16.1%	51.7%	25.0%	5.4%	26.7%
MakeIttalk	2.07	33.9%	30.4%	30.4%	5.3%	0.0%	32.1%
Ours	4.45	0.0%	0.0%	12.5%	30.4%	57.1%	83.9%

Conclusion

Contribution:

- The low-definition pseudo video predicted by Wav2Lip with the target video and LRS2 audio is introduced to enhance the audio-driven identity-disentangled ability of talking face generation.
- We train a modified audio-to-expression (A2E) network to guarantee the accurate lip motion driven by arbitrary audio, which makes our method possess an powerful audio-driven performance comparable to Wav2Lip.
- A modified crop module is introduced for automatically adapting the size of the 3DMM synthetic face to the original face area, then enabled our framework to meet the requirements of 4K-definition photo-realistic talking face video.

Future work:

• talking face generation based on target identity disentanglement.

Thank you