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ABSTRACT

Speech separation dataset typically consists of hard and non-hard
samples, and the former is minority and latter majority. The data
imbalance problem biases the model towards non-hard samples and
weakens the generalization capability. Given that the average sep-
aration performance is sufficiently good, improving hard samples
may contribute more to back-end tasks. In this paper, we propose
two methods to alleviate data imbalance in speech separation task,
based on local and global hard sample mining. For the local, we
propose weighted loss to compensate for hard samples by increasing
their weights in each batch. For the global, we perform global hard
sample mining and re-sample to increase the proportion of hard sam-
ples in the training set. Because hard sample mining using objective
loss in dynamic mixing leads to local results, we propose an indi-
rect method using speaker-specific parameters, based on the fact that
pitch median difference and x-vector cosine distance of two speakers
in a mixture are closely correlated with separation SI-SNRi. Exper-
imental results show that both methods decrease the percentage of
hard samples in the test set than using dynamic mixing only while
keeping the average SI-SNRi comparable, and the global method
shows more promising results than the local one.

Index Terms— Speech separation, data imbalance, dynamic
mixing, weighted loss, hard sample mining

1. INTRODUCTION

Single-channel speech separation is important and challenging in
speech processing. Recently, speech separation based on deep learn-
ing has achieved promising performance [1, 2, 3, 4, 5, 6, 7, 8]. How-
ever, these methods typically report the average metric between es-
timates and reference signals. In the training process, the data are
sampled uniformly. Therefore, unbiased models are trained with
large variances, which leads to more failures, i.e., hard samples, in
the generalization. Given that the average separation performance
is sufficiently good, improving hard samples may contribute more
to back-end tasks (e.g., speech recognition). The following studies
improve hard samples from different aspects. Some studies [3, 9]
demonstrate that frame-level permutation invariant training (PIT)
outperforms utterance-level PIT in reducing separation failures. Tzi-
nis et al. [10] propose a gradient reweighting scheme to bias the
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model towards bad predictions. Zeghidour et al. [11] generate train-
ing samples dynamically to significantly improve separation perfor-
mance, including hard samples, but it is still sampled uniformly.

According to objective loss, training samples with low perfor-
mance can be regarded as hard and the others as non-hard. Typi-
cally, the former is the minority and latter the majority. Assuming
that hard and non-hard samples are two classes with different inter-
nal attributes, the model is actually biased towards non-hard sam-
ples, which weakens the generalization capability in the test set. On
the basis of this observation, we assume that uniform sampling in
the training set leads to data imbalance, and balancing between hard
and non-hard samples may benefit generalization. Previous studies
on data imbalance mainly focus on classification tasks, in which tra-
ditional solutions include re-sampling [12, 13, 14] and cost-sensitive
weighting [15, 16, 17]. Some researchers propose re-weighting or
novel loss function to compensate for the imbalanced class [18, 19,
20, 21, 22, 23]. Some corresponding learning paradigms for data
imbalance have been investigated [24, 25, 26]. Data augmentation is
another common approach used to address data imbalance [27, 28,
29, 30, 31]. Speech separation is fundamentally a regression task
[32]. Though Yang et al. [33] proposed distribution smoothing for
both labels and features for deep imbalanced regression, data imbal-
ance in regression tasks has not been as well explored.

In this paper, we propose two methods from the perspective of
hard sample mining to alleviate data imbalance, both of which are
based on dynamic mixing [11]. For local hard sample mining, we
search hard samples using objective loss in each batch. We then pro-
pose weighted loss to compensate for hard samples by increasing
their weights during training. We also apply the weighted loss in
the validation stage to select the model biased towards hard samples.
However, local hard samples may lead to sub-optimal results. For
global hard sample mining, when applying dynamic mixing, dis-
criminating hard samples using objective loss during each training
epoch leads to local hard samples. We propose an indirect method
for global hard sample mining. Specifically, we first analyze the
correlation between speaker-specific parameters and the separation
results. The work [34] shows that the pitch median difference of two
speakers in a mixture is correlated with separation results. Addi-
tionally, we investigate two more parameters, the energy ratio and x-
vector cosine distance of two speakers in a mixture. We find that the
x-vector cosine distance has a good correlation with the separation
results. Then we add data preprocessing before training to search
hard samples globally and indirectly, and then re-sample to increase
the proportion of hard samples during training. The experimental
results demonstrate that both methods effectively decrease the per-
centage of hard samples in the test set while keeping the average



metrics comparable, and the method based on global hard sample
mining shows more promising results than the local method.

The contributions of this work are summarized as follows: 1,
To the best of our knowledge, this is the first study in which speech
separation is improved by alleviating data imbalance. 2, We propose
a novel weighted loss based on local hard sample mining. 3, We
discover that the x-vector cosine distance between two speakers in
a mixture is correlated with the separation results. 4, We propose a
novel indirect method for global hard sample mining and a new data
augmentation method using hard re-sampling.

2. DYNAMIC MIXING BASED ON GLOBAL HARD
SAMPLE MINING

To separate the speech of two speakers, let D = ((x1i , x
2
i ), yi)i be

the training set, where x1i and x2i are individual audios, yi is the mix-
ture, i is the sample index, and x1i + x2i = yi. The probability of
selecting each sample is typically equal: P (i|D) = 1

|D| . We assume
that the training set consists of hard and non-hard samples, and set a
threshold to define hard samples as those whose evaluation metrics
are lower than the threshold, and the others are non-hard samples.
Generally, hard samples account for a small proportion of all sam-
ples. Let Dh and Dnh be the set of hard and non-hard samples,
respectively. Then D = Dh ∪ Dnh, and |Dh| << |Dnh|. This
imbalanced training set biases the model towards non-hard samples
during training and weakens the generalization capability of hard
samples in the test set. One possible solution is to increase the pro-
portion of hard samples in the training set using data augmentation
so that |Dh| and |Dnh| are comparable to balance model training.

The proposed method consists of three steps: dynamic mixing,
hard sample mining and hard re-sampling, as shown in Fig.1. Specif-
ically, we search hard samples globally in the training set generated
using dynamic mixing. Instead of using objective loss, the search
is performed using speaker-specific parameters indirectly, based on
the correlation between these parameters and the separation results.
Then we re-sample to increase the proportion of hard samples.
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Fig. 1. Process of dynamic mixing with hard sample mining

2.1. Dynamic mixing
The general dataset in speech separation is static and does not change
after creation. In this paper, we apply the method of dynamic mixing
[11] to the training set for data augmentation. Specifically, the model
receives a batch of B × 2 audios, where B is the batch size and 2
is the number of speakers. A new batch is created by shuffling the

audios randomly, where the gains are sampled for each audio and
each pair of audios is summed to obtain B mixtures.

2.2. Correlation analysis
We investigate three speaker-specific parameters that are expected to
be correlated with the separation results.
Difference of fundamental frequency medians: The fundamental
frequency, i.e., pitch, denoted by f0, is an intrinsic property of peri-
odic signals. f0 is a time-varying parameter for a fixed speaker. We
use the median of the f0 sequence of an utterance as the considered
parameter [34]. The f0 median difference is defined as the absolute
value of the difference between the median of two f0 sequences.
Energy ratio: We define the energy ratio as:

ER = 10

∣∣∣∣log10 E1

E2

∣∣∣∣ , (1)

where E1 and E2 are the energies of two utterances in a mixture.
Cosine distance of x-vectors: The x-vectors [35], which map
variable-length utterances to fixed-dimensional embeddings, cap-
ture speaker characteristics. The cosine distance of x-vectors is
typically used to discriminate between speakers.

Pearson’s correlation coefficient is used to measure the correla-
tion between speaker-specific parameters and separation results:

ρ =
Cov (S, P )√

SD (S)
√
SD (P )

, (2)

where Cov and SD are the covariance and standard deviation, and
S and P are sequences of separation metrics and speaker-specific
parameters, respectively. Results of correlation analysis regarding
the speaker-specific parameters will be presented in the later experi-
ments.

2.3. Hard sample mining
Generating samples dynamically makes it challenging to search hard
samples globally during training. We apply an indirect method using
speaker-specific parameters for hard sample mining during prepro-
cessing. Specifically, for each audio sample, we sort all its possi-
ble sample pairs generated by dynamic mixing using the speaker-
specific parameters and select the bottom M pairs with low perfor-
mance as hard samples. We traverse all samples to complete the
corresponding hard sample mining. The value of M determines the
constrained strength of hard samples during training. The smallerM
is, the stronger the constraint, and the larger M is, the more relaxed
the constraint. We can replace M with the percentage of M in all
possible sample pairs, which is recorded as PM , where PM is the
proportion of hard samples in the original training set of dynamic
mixing.

2.4. Hard re-sampling

Based on hard sample mining results, we re-sample in the training
set generated by dynamic mixing, to increase the proportion of hard
samples during training, i.e., hard re-sampling. For an input batch
that has B× 2 audios, we replace each audio pair with hard samples
with probability PS . Specifically, we randomly select an audio in a
pair as a pivot and then sample a new audio pair in all its correspond-
ing hard sample pairs randomly. Typically, PM is much smaller than
PS . Therefore, PS approximately determines the proportion of hard
samples in the new training set after hard re-sampling. PS also needs
to be set appropriately. A high PS makes the model too biased to-
wards hard samples and easy to overfit, whereas a low PS makes the
model insufficient for improving hard samples.



3. WEIGHTED LOSS BASED ON LOCAL HARD SAMPLE
MINING

We propose an alternative method based on local hard sample min-
ing. Existing speech separation methods typically use the average
scale-invariant signal-to-noise ratio (SI-SNR) [6] in a batch as the
objective training loss, which biases the trained model towards non-
hard samples in the majority. We propose the following weighted
SI-SNR(wSI-SNR):

wSI-SNR =

B∑
i=1

wili, (3)

where B is the batch size, li is the SI-SNR of the ith audio pair, and
wi is the new weight. We use negative wSI-SNR as the training ob-
jective loss. We sort li in descending order in a batch and determine
wi using its index:

wi =
i∑B
i=1 i

, (4)

where i is the index after sorting. We aim to increase the weights
of hard samples in a batch. It is worth noting that the weighted
loss compensates for hard samples by increasing their weights in
the objective loss, while dynamic mixing with hard sample mining
compensates for hard samples by increasing their proportion in the
training set. Therefore they achieve the similar goal from differ-
ent aspects. To avoid repeated compensation, we do not apply the
weighted loss in dynamic mixing with hard sample mining during
training.

We also apply wSI-SNR during validation. Instead of consider-
ing a batch in training, we calculate all validation samples for wSI-
SNR, by sorting all validation samples according to SI-SNR. The
weighted validation loss helps to select models that are more biased
towards hard samples.

4. SETUP

4.1. Setup of correlation analysis
We first perform correlation analysis to discriminate between the
speaker-specific parameters that are expected to be correlated with
the separation results. We use the 8 kHz sampling of the WSJ0-
2mix [1] dataset. The mixtures are generated by mixing two random
speakers in the Wall Street Journal dataset (WSJ0) training set s tr s
with a random SNR of -5 to 5dB, to obtain about 30 hours of train-
ing and 10 hours of validation speech data. We mix any two speakers
from the WSJ0 development set si dt 05 and evaluation set si et 05
in the same way to generate 5 hours of evaluation set, which contains
3000 recordings.

The utilized model of speech separation is Conv-TasNet [6],
which contains three modules: the encoder, separation, and decoder.
The separation module comprisesR convolutional blocks consisting
of X 1-D dilated convolutional layers with exponentially increasing
dilation factors. In order to reduce the training time, we modify the
original R = 3 and X = 8 to R = 2 and X = 6 to obtain a light
model. We follow the method in [35] to train an x-vector extractor,
in which we use the WSJ0 and WSJ1 datasets, which contain 206
speakers. After applying speed perturbation, we obtain 618 speakers
with 508 hours of speech in total. We extract the x-vectors at the
layer before the nonlinearity of the model, and the output dimension
is 512. We employ SI-SNR improvement (SI-SNRi) as the separa-
tion evaluation metric.

4.2. Setup of speech separation
Experiments of speech separation involves using the weighted loss
and dynamic mixing with hard sample mining. The dataset is con-
sistent with that in section 4.1, and the sample gains during dynamic
mixing are between -5 to 5 dB. We use light Conv-TasNet to adjust
the hyperparameters and show the final results with the full model.
SI-SNRi is used as the evaluation metric. In order to evaluate the per-
formance of hard samples, we report hard sample rate (HSR) [9, 11].
We set a threshold in the test set, and those below the threshold are
regarded as hard. It is worth noting that the hard sample threshold
in the test set is independent of that in the training set. We set two
thresholds: 5 dB and 10 dB, corresponding to HSR5 and HSR10.
We add the constraint that audios in the generated sample pair do
not come from the same speaker. Adam [36] is used as the opti-
mizer, and the initial learning rate is set to 0.001. All the models are
trained for 100 epochs on 4 second long segments. Gradient clipping
with a maximum L2 norm of 5 is applied during training.

5. RESULTS

5.1. Results of correlation analysis
Fig. 2 shows the results of correlation analysis, including the cor-
relation coefficient, SI-SNRi line, and density distribution of the
speaker-specific parameters. All the samples in the test set are ar-
ranged in ascending order according to SI-SNRi. We can find that
the SI-SNRi is non-linear, with a flat right part, while it drops rapidly
in the left part. For the correlation between the pitch median differ-
ence and SI-SNRi, the correlation coefficient is 0.443, which is a
promising value; then, the density distribution of pitch median dif-
ference is approximately consistent with SI-SNRi, that consists of a
flat right part and a left part dropping rapidly. The energy ratio has
no correlation with the SI-SNRi based on the observation of the cor-
relation coefficient and density distribution. For the x-vector cosine
distance, we observe a slightly higher correlation coefficient (0.447),
and a more obvious consistent trend between the density distribution
and SI-SNRi. We can conclude that the pitch median difference and
x-vector cosine distance are well correlated with the separation SI-
SNRi. The well-correlated parameters provide a possible approach
to use the indirect method for global hard sample mining.

5.2. Results of speech separation
Results of local hard sample mining: We first examine separation
results of the weighted loss based on local hard sample mining, as
shown in Table1. The baseline is light Conv-TasNet, to which we
add dynamic mixing (DM), weighted loss for the training set (WTL)
and weighted loss for the validation set (WVL), respectively. We
can find that compared with the baseline, adding DM effectively im-
prove the SI-SNRi and HSRs. After applying the combination of
WTL and WVL, the HSRs can be improved further based on DM.
Moreover, the individual application of WTL and WVL also results

Table 1. Results of weighted loss

Model DM WTL WVL SI-SNRi(dB) HSR5(%) HSR10(%)

Conv-TasNet

14.41 8.00 15.00
X 15.75 3.30 7.20
X X 15.44 2.86 7.77
X X 15.72 3.15 7.20
X X X 15.72 2.40 6.37
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Fig. 2. Diagrams of SI-SNRi line and density distribution of speaker-specific parameters

Table 2. Results of hard sample mining with different PM

Model Para. for hard
sample mining PM (%) SI-SNRi(dB) HSR5(%) HSR10(%)

Conv-TasNet
+DM
+WVL

pitch median
difference

1 15.71 2.63 6.50
2 15.81 2.40 6.00
3 15.78 2.53 6.30
4 15.63 3.17 6.60
5 15.50 3.10 7.13

x-vector cosine
distance

1 15.32 3.00 7.00
2 15.46 2.77 6.93
3 15.50 2.57 6.17
4 15.68 2.00 6.50
5 15.62 2.63 6.53

PS is fixed to 30%

Table 3. Results of hard re-sampling with different PS

Model Para. for hard
sample mining PS (%) SI-SNRi(dB) HSR5(%) HSR10(%)

Conv-TasNet
+DM
+WVL

pitch median
difference

20 15.63 2.90 6.97
30 15.81 2.40 6.00
40 15.49 2.77 7.13

x-vector cosine
distance

20 15.57 2.73 6.93
30 15.68 2.00 6.50
40 15.43 2.27 6.33

PM=%2 for pitch median and %4 for x-vector

in some improvements to the HSRs. The results demonstrate the ef-
fectiveness of WTL and WVL for improving hard samples. And we
apply WVL in the other experiments.
Results of global hard samples mining: We first fix the probability
of hard re-sampling, i.e., PS , as 30%. For different PM in hard sam-
ple mining, we investigate five settings: 1%, 2%, 3%, 4%, and 5%.
The results are shown in Table 2. We can find that when applying the
pitch median difference as the speaker-specific parameter, the setting
of PM = 2% achieves the best results. For the x-vector cosine dis-
tance, the best SI-SNRi and HSR5 are achieved with the setting of
PM = 4%. We compare the results of the pitch median difference
and x-vector cosine distance, and find that the former achieves better
SI-SNRi and HSR10, whereas the latter wins on HSR5. Then we in-
vestigate different settings of PS , including 20%, 30% and 40%, as
shown in Table 3. We find that for both speaker-specific parameters,
the setting of PS=30% provides most of the best results.
Results of full model: Table 4 reports the results of full Conv-
TasNet using the PM and PS with the best results in the light model
as a summary. Similar to results of the light model, applying DM
significantly outperforms the baseline Conv-TasNet on SI-SNRi and

Table 4. Results of full Conv-TasNet

Model DM WTL WVL Para. for hard
sample mining SI-SNRi(dB) HSR5(%) HSR10(%)

Conv-TasNet

15.73 5.70 10.63
X 17.47 2.17 3.67
X X X 17.24 1.13 2.83
X X pitch median 17.25 1.13 2.70
X X x-vector 17.18 0.93 2.17

HSRs. Both methods proposed show comparable SI-SNRi compared
with DM, while making HSRs decreased obviously. Particularly,
the method using the x-vectors achieves the best HSRs of 0.93% on
HSR5 and 2.17% on HSR10. It can be seen that the x-vectors can
more effectively represent the internal attributes of hard samples,
that is, the more similar the characteristics of each audio, the more
difficult it is to separate the mixture.

For global hard sample mining, we investigated three speaker-
specific parameters and discovered that the x-vector cosine distance
of two speakers in a mixture has the best correlation with the separa-
tion results. Meanwhile, the correlation between the speaker-specific
parameters and separation results is not perfect, e.g. the correla-
tion coefficient of the x-vector cosine distance and SI-SNRi is 0.447,
which is still some distance from 1.0, and there are some outliers in
the density distribution of the x-vectors whose trend is not perfectly
correlated with SI-SNRi. These deficiencies may introduce errors in
indirect hard sample mining. Despite this, the method with global
hard sample mining still achieves the best hard sample rate in the
test set, thereby demonstrating the superiority of global hard sample
mining over its local counterpart for speech separation.

6. CONCLUSIONS

We explore an improved separation model for hard samples instead
of training a model using average metrics. We assume that sampling
uniformly in the training set leads to data imbalance. We propose
two methods for improving separation on hard samples: local hard
sample mining based, i.e., weighted loss, and global hard sample
mining based, i.e., dynamic mixing with hard sample mining. The
experimental results demonstrate that both methods outperform the
baseline of using dynamic mixing only on hard sample rate while
keeping the SI-SNRi comparable. The method of weighted loss is
simple and easy to apply, whereas the method of dynamic mixing
with hard sample mining shows more promising results.



7. REFERENCES

[1] J. R. Hershey, Z. Chen, J. L. Roux, and S. Watanabe, “Deep cluster-
ing: Discriminative embeddings for segmentation and separation,” in
2016 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2016, pp. 31–35.

[2] Z. Chen, Y. Luo, and N. Mesgarani, “Deep attractor network for single-
microphone speaker separation,” in 2017 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2017, pp. 246–250.

[3] D. Yu, M. Kolbæk, Z.-H. Tan, and J. Jensen, “Permutation invariant
training of deep models for speaker-independent multi-talker speech
separation,” in 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2017, pp. 241–245.

[4] M. Kolbæk, D. Yu, Z.-H. Tan, and J. Jensen, “Multitalker speech sepa-
ration with utterance-level permutation invariant training of deep recur-
rent neural networks,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 25, no. 10, pp. 1901–1913, 2017.

[5] Y. Luo and N. Mesgarani, “Tasnet: time-domain audio separation net-
work for real-time, single-channel speech separation,” in 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2018, pp. 696–700.

[6] Y. Luo and N. Mesgarani, “Conv-tasnet: Surpassing ideal time–
frequency magnitude masking for speech separation,” IEEE/ACM
transactions on audio, speech, and language processing, vol. 27, no.
8, pp. 1256–1266, 2019.

[7] Jingjing Chen, Qirong Mao, and Dong Liu, “Dual-path transformer net-
work: Direct context-aware modeling for end-to-end monaural speech
separation,” arXiv preprint arXiv:2007.13975, 2020.

[8] Cem Subakan, Mirco Ravanelli, Samuele Cornell, Mirko Bronzi, and
Jianyuan Zhong, “Attention is all you need in speech separation,”
in ICASSP 2021-2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2021, pp. 21–25.

[9] Xiaoyu Liu and Jordi Pons, “On permutation invariant training for
speech source separation,” in ICASSP 2021-2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2021, pp. 6–10.

[10] Efthymios Tzinis, Dimitrios Bralios, and Paris Smaragdis, “Unified
gradient reweighting for model biasing with applications to source sep-
aration,” in ICASSP 2021-2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021, pp.
531–535.

[11] Neil Zeghidour and David Grangier, “Wavesplit: End-to-end speech
separation by speaker clustering,” arXiv preprint arXiv:2002.08933,
2020.

[12] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip
Kegelmeyer, “Smote: synthetic minority over-sampling technique,”
Journal of artificial intelligence research, vol. 16, pp. 321–357, 2002.

[13] Haibo He and Edwardo A Garcia, “Learning from imbalanced data,”
IEEE Transactions on knowledge and data engineering, vol. 21, no. 9,
pp. 1263–1284, 2009.

[14] Tomasz Maciejewski and Jerzy Stefanowski, “Local neighbourhood
extension of smote for mining imbalanced data,” in 2011 IEEE sym-
posium on computational intelligence and data mining (CIDM). IEEE,
2011, pp. 104–111.

[15] Kai Ming Ting, “A comparative study of cost-sensitive boosting al-
gorithms,” in In Proceedings of the 17th International Conference on
Machine Learning. Citeseer, 2000.

[16] Bianca Zadrozny, John Langford, and Naoki Abe, “Cost-sensitive
learning by cost-proportionate example weighting,” in Third IEEE in-
ternational conference on data mining. IEEE, 2003, pp. 435–442.

[17] Yuchun Tang, Yan-Qing Zhang, Nitesh V Chawla, and Sven Krasser,
“Svms modeling for highly imbalanced classification,” IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 39,
no. 1, pp. 281–288, 2008.

[18] Chen Huang, Yining Li, Chen Change Loy, and Xiaoou Tang, “Learn-
ing deep representation for imbalanced classification,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2016, pp. 5375–5384.

[19] Qi Dong, Shaogang Gong, and Xiatian Zhu, “Class rectification hard
mining for imbalanced deep learning,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017, pp. 1851–1860.

[20] Qi Dong, Shaogang Gong, and Xiatian Zhu, “Imbalanced deep learning
by minority class incremental rectification,” IEEE transactions on pat-
tern analysis and machine intelligence, vol. 41, no. 6, pp. 1367–1381,
2018.

[21] Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu
Ma, “Learning imbalanced datasets with label-distribution-aware mar-
gin loss,” in NeurIPS, 2019.

[22] Chen Huang, Yining Li, Chen Change Loy, and Xiaoou Tang, “Deep
imbalanced learning for face recognition and attribute prediction,”
IEEE transactions on pattern analysis and machine intelligence, vol.
42, no. 11, pp. 2781–2794, 2019.

[23] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie,
“Class-balanced loss based on effective number of samples,” in Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 2019, pp. 9268–9277.

[24] Xi Yin, Xiang Yu, Kihyuk Sohn, Xiaoming Liu, and Manmohan Chan-
draker, “Feature transfer learning for face recognition with under-
represented data,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 5704–5713.

[25] Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu,
and Deyu Meng, “Meta-weight-net: Learning an explicit mapping for
sample weighting,” arXiv preprint arXiv:1902.07379, 2019.

[26] Y. Yang and Z. Xu, “Rethinking the value of labels for improving class-
imbalanced learning,” in NeurIPS, 2020.
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