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Problem Formulation

To overcome inherent hardware limitations of hyperspectral imaging systems with their spatial
resolution, fusion-based hyperspectral image (HSI) super-resolution [Lanaras et al. 2015] is
attracting increasing attention.

Fusion-based HSI super-resolution:
Restore a high-resolution (HR) HSI X by fusing a low-resolution (LR) HSI Y and a
conventional HR RGB image Z.

This framework is based on the following linear degradation model:

Y = XBS, Z = RX. (1)

where B is the spatial blurring matrix, S is a downsampling operator, and R denotes the
spectral response function (SRF) of the RGB camera.
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Problem Formulation

Based on (1), this problem can be written as the minimization of a constrained objective
function of the form:

J(X) = ∥Y − XBS∥2F + ∥Z− RX∥2F + φ(X) (2)

where φ(·) is some regularization functions.

Reconstructing X from Y and Z by minimizing (2) without φ(·) is a highly ill-posed problem.
This justifies the use of φ(·) to constrain the solution space by exploiting the prior
information on X.
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Related Work and Motivations

The classic model-based optimization framework considers the well-defined prior information
to enhance the super-resolution performance.

Designing explicit φ(·) is one efficient way to incorporate such image priors.

Sparsity [Akhtar et al. 2014].

Spatial continuity [Lanaras et al. 2015].

Edge preserving [Dian et al. 2019].
...

Drawback: designing a powerful φ(·) is not trivial and may also cause difficulty in finding
optimal solutions.
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Related Work and Motivations

Inspired by the success of deep learning, data-driven convolutional neural networks (CNN)
have been considered [Palsson et al. 2017; Zhang et al. 2020].

Deep learning methods require less prior information on X and achieve significant
performance enhancement compared to model-based methods.

Drawback: they need massive data for training and may not be consistent with the
physical degradation model involving Y and Z.

Is it possible to leverage the merits of both model-based and deep learning methods?
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Related Work and Motivations

To tackle this issue, recent approaches have started to plug the output of an CNN, denoted as
X̃, into the objective function (2) as a deep prior regularizer.

The Frobenius norm φ(X) = ∥X− X̃∥2F is considered in [Xie et al. 2019; Wang et al.
2021].

The 2D Total Variation (TV) norm φ(X) = ∥X− X̃∥2TV + ∥X∥TV is used in [Vella et al.
2021].

Nevertheless, none of these methods simultaneously exploits the spectral-spatial gradient
information for enhancing fusion process.
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Our Method with Deep Priors and Degradation Model Inversion

Figure: The scheme of our method.

In this work, as illustrated in Figure, we address this problem with deep priors and model
degradation inversion accounting for spatial/spectral gradient deviation of HSIs.
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Our Method with Deep Priors and Degradation Model Inversion

Specific, an CNN output X̃ is used to enhance the result via φ(X) by reducing the difference
between X and X̃ in spectral and spatial gradient domains respectively.

Under this design, the objective function (2) becomes:

J(X) = ∥Y − XBS∥2F + ∥Z− RX∥2F + φ(X)

with φ(X) = µ∥D(x− x̃)∥2 + ν∥E(x− x̃)∥2

and X̃ = CNN(Y,Z)

(3)

∥Y − XBS∥2F and ∥Z− RX∥2F guarantee that the candidate solution is consistent with
the degradation model (1).

∥D(x− x̃)∥2 and ∥E(x− x̃)∥2 are regularization terms exploiting deep priors, with positive
hyper-parameters µ and ν.
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Our Method with Deep Priors and Degradation Model Inversion

Matrix D can be designed by choosing first a convolution kernel D. We consider the Laplacian
filter Dℓ for each channel ℓ:  0 −1 0

−1 4 −1
0 −1 0

 . (4)

We construct a block-Toeplitz matrix Dℓ as in [Henrot et al. 2012]. This leads to matrix D
in (3) with block-diagonal structure:

D =


D1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 DB

 . (5)
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Our Method with Deep Priors and Degradation Model Inversion

A typical choice of E is a first-order derivative filter E0 = [1− 1] along the spectral dimension.
The convolution matrix is then given by:

E0 =


−1 1 0 . . . 0

0 −1 1
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 −1 1

 . (6)

This yields:
E = E0 ⊗ IN (7)

where ⊗ denotes the Kronecker product and IN is the identity matrix.
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Iterative Numerical Optimization

Variable splitting based on HQS

HQS is employed to decouple the data fidelity terms and the regularization terms in (3). By
introducing an auxiliary variable V, we have:

X̂ = min
X

∥Y − XBS∥2F + ∥Z− RX∥2F + µ∥D(v − x̃)∥2 + ν∥E(v − x̃)∥2 s.t. V = X. (8)

The augmented Lagrangian function is given by:

Lρ(X,V) = ∥Y − XBS∥2F + ∥Z− RX∥2F + ρ∥X− V∥2F + µ∥D(v − x̃)∥2 + ν∥E(v − x̃)∥2 (9)

where ρ is a penalty parameter. HQS method then minimizes (9) via the following steps:

Xk+1 = min
X

∥Y − XBS∥2F + ∥Z− RX∥2F + ρ∥X− Vk∥2F (10)

vk+1 = min
v

ρ∥xk+1 − v∥2 + µ∥D(v − x̃)∥2 + ν∥E(v − x̃)∥2 (11)
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Iterative Numerical Optimization

Optimization w.r.t. X
To solve sub-problem (10), we set the gradient of the objective function (10) w.r.t. X to zero.
Thus, Xk+1 is the solution of the Sylvester equation:

C1Xk+1 + Xk+1C2 = C3 (12)

where

C1 = RTR+ µIB

C2 = (BS)(BS)T

C3 = RTZ+ Y(BS)T + ρVk

(13)

and IB is the identity matrix.

For a fast algorithm solving (12), the interested reader can refer to [Wei et al. 2015].
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Iterative Numerical Optimization

Optimization w.r.t. v
We can rewrite the objective function in (11) in 3D image domain with a sum running over
spectral channels:

min
V

B∑
ℓ=1

(
ρ∥Xk+1,ℓ − Vℓ∥2F + µ∥Dℓ∗2D(Vℓ − X̃ℓ)∥2F + ν∥[E0∗1D(V − X̃ )]ℓ∥2F

)
(14)

The operator ∗2D denotes 2D spatial convolution while ∗1D represents 1D spectral convolution.
Using 2D DFT in the spatial domain, we can rewrite (14) as:

min
V

B∑
ℓ=1

(
ρ∥X k+1,ℓ − V ℓ∥2F + µ∥D ℓ ⊙ (V ℓ − X̃ ℓ)∥2F + ν∥[E0∗1D(V − X̃ )]ℓ∥2F

)
(15)

with ⊙ the Hadamard product and underline symbols denoting Fourier transform.
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Iterative Numerical Optimization

Optimization w.r.t. v
The optimization problem in (11) can be decomposed into a set of independent sub-problems
with each spatial frequency variable f:

min
vf

∥xk+1,f − vf∥2 + µ′∥∆D(f)(vf − x̃f)∥2 + ν ′∥E0(vf − x̃f)∥2 (16)

where µ′ = µ/ρ, ν ′ = ν/ρ and

vf = {V ℓ(f), ℓ = 1, . . . ,B} , x̃f = {X̃ ℓ(f), ℓ = 1, . . . ,B}
xk+1,f = {X k+1,ℓ(f), ℓ = 1, . . . ,B}, ∆D(f) = diag {D ℓ(f), ℓ = 1, . . . ,B}

(17)

For each f, the solution of (16) can be computed as:

vf = Tf
−1(xk+1,f + µ′∆D(f)

∗∆D(f)x̃f + ν ′E∗
0E0x̃f) (18)

where ∗ denotes the complex conjugate and Tf = (IB + µ′∆D(f)
∗∆D(f) + ν ′E∗

0E0).
Finally, we can obtain vk+1 by calculating the inverse 2D DFT in the spatial domain.
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Experimental Results

Datasets: CAVE [Yasuma et al. 2010] and Harvard [Chakrabarti and Zickler 2011].

Setups:
1 B: an 32× 32 uniform blurring operator;
2 S: a down-sampling operator with the factor 32;
3 R: the response of a Nikon D700 camera.

Methods to calculate X̃ for each X:
1 UAL [Zhang et al. 2020] considering deep learning;
2 NSSR [Dong et al. 2016] based on sparse decomposition;
3 LTTR [Dian et al. 2019] using tensor factorization.

The code is made available at github.com/xiuheng-wang.
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Experimental Results

Quantitative comparisons:

Table: Averaged RMSE, PSNR, SAM, ERGAS and SSIM of different methods on the CAVE and Harvard data sets.

Methods CAVE data set Harvard data set
RMSE PSNR ERGAS SAM SSIM RMSE PSNR ERGAS SAM SSIM

UAL 1.854 44.656 0.196 4.33 0.9910 1.833 45.807 0.323 3.58 0.9832
UAL + Ours 1.587 45.939 0.171 4.08 0.9917 1.784 46.034 0.316 3.54 0.9833

NSSR 2.236 43.439 0.244 5.22 0.9849 1.874 45.540 0.363 3.73 0.9821
NSSR + Ours 2.068 44.044 0.230 5.19 0.9854 1.844 45.649 0.357 3.69 0.9822

LTTR 2.300 43.277 0.249 5.50 0.9848 1.914 45.251 0.375 3.81 0.9813
LTTR + Ours 2.235 43.613 0.243 5.27 0.9851 1.887 45.392 0.374 3.77 0.9915

It can be observed that our algorithm significantly improved the performance of all the
baselines.
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Experimental Results

Qualitative comparisons:

Figure: Reconstructed images and corresponding error maps of two images from the CAVE data set in the 540 nm band.

It confirms that our approach produced smaller reconstruction errors than the UAL.
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Conclusions

We introduced an HSI super-resolution based on a deep prior regularizer:

Deep priors are used to constrain degradation model inversion in the form of a regularizer
designed in the spatial and spectral gradient domain.

Experiments showed the performance improvement achieved with this strategy compared
with state-of-the-art methods.
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