

- - fidelity term of the objective function;
- with this strategy.

Hyperspectral Image Super-resolution with Deep Priors and **Degradation Model Inversion**

Xiuheng Wang*, Jie Chen⁺, Cédric Richard* * Université Côte d'Azur, CNRS, OCA, France. [†]School of Marine Science and Technology, Northwestern Polytechnical University, China

Numerical Opt	imization
sed on HQS:	Optimization w.r
+ $\ \mathbf{Z} - \mathbf{R}\mathbf{X}\ _{F}^{2} + \mu \ \mathbf{D}(\mathbf{v} - \tilde{\mathbf{x}})\ ^{2}$ s.t. $\mathbf{V} = \mathbf{X}$. $\mathbf{V} = \mathbf{V}_{K} _{F}^{2}$.	X_{k+1} is the solution C_1X_{k+1} where $C_1 = R$ $C_2 = (R - R)$ $C_3 = R$ For a fast algorithm
	with the solution
nposed in the Fourier domain [2] as	$\mathbf{v_f} = \mathbf{T_f}^{-1}(\mathbf{x}_{k+1})$
$u' \ \Delta_{\mathcal{D}}(\mathbf{f})(\mathbf{v_f} - \tilde{\mathbf{x}_f})\ ^2 + \nu' \ \mathbf{E}_0(\mathbf{v_f} - \tilde{\mathbf{x}_f})\ ^2$	Finally, we can obt

Experimental Results

Averaged RMSE, PSNR, SAM, ERGAS and SSIM of different methods on the CAVE and Harvard data sets										
ethods	CAVE data set				Harvard data set					
	RMSE	PSNR	ERGAS	SAM	SSIM	RMSE	PSNR	ERGAS	SAM	SSIM
JAL	1.854	44.656	0.196	4.33	0.9910	1.833	45.807	0.323	3.58	0.9832
+ Ours	1.587	45.939	0.171	4.08	0.9917	1.784	46.034	0.316	3.54	0.9833
ISSR	2.236	43.439	0.244	5.22	0.9849	1.874	45.540	0.363	3.73	0.9821
R + Ours	2.068	44.044	0.230	5.19	0.9854	1.844	45.649	0.357	3.69	0.9822
TTR	2.300	43.277	0.249	5.50	0.9848	1.914	45.251	0.375	3.81	0.9813
R + Ours	2.235	43.613	0.243	5.27	0.9851	1.887	45.392	0.374	3.77	0.9915

UAL+Proposed UAL+Proposed UAL UAL 0.02 0.03 0.01 0.04

Figure: Reconstructed images and corresponding error maps of two images from the CAVE data set in the 540 nm band

Conclusion

In this paper, we introduced an HSI super-resolution method which makes use of a degradation model in the data-fidelity term of the objective function and, on the other hand, utilizes the spectral-spatial gradient deviation of latent HSIs and the output of a convolutional neural network as a deep prior regularizer.

Observatoire de la CÔTE d'AZUR Membre de UNIVERSITÉ CÔTE D'AZUR

r.t. X:

on of the Sylvester equation: $+ X_{k+1}C_2 = C_3$

 $\mathcal{X}^T \mathbf{R} + \mu \mathbf{I}_B$ $\mathbf{BS})(\mathbf{BS})^T$ $\mathbf{R}^T \mathbf{Z} + \mathbf{Y} (\mathbf{BS})^T + \rho \mathbf{V}_k$ m solving this equation, refer to [1].

for each spatial frequency **f** :

 $_{\mu+1,\mathbf{f}} + \mu' \Delta_{\mathcal{D}}(\mathbf{f})^* \Delta_{\mathcal{D}}(\mathbf{f}) \tilde{\mathbf{x}}_{\mathbf{f}} + \nu' \mathbf{E}_0^* \mathbf{E}_0 \tilde{\mathbf{x}}_{\mathbf{f}})$

tain \mathbf{v}_{k+1} by the inverse 2D DFT.

 Table shows that our algorithm significantly improved the performance of the baselines.

• Figure confirms that our approach produced smaller reconstruction errors than the UAL.