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1. We introduce a novel strategy for HSI super-resolution that

• makes use of the physical linear degradation model in the data-
fidelity term of the objective function;

• exploits the spectral-spatial gradient difference of HSIs using a deep 
prior regularizer from the output of an CNN.

2. Experimental results show the performance improvement achieved 
with this strategy.
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⚫ Table shows that our algorithm 
significantly improved the 
performance of the baselines.

⚫ Figure confirms that our approach 
produced smaller reconstruction 
errors than the UAL.

Conclusion 
In this paper, we introduced an HSI super-resolution method which makes use of a degradation model in

the data-fidelity term of the objective function and, on the other hand, utilizes the spectral-spatial gradient
deviation of latent HSIs and the output of a convolutional neural network as a deep prior regularizer.
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Object function:

Variable splitting based on HQS: Optimization w.r.t. X:

For a fast algorithm solving this equation, refer to [1].

Optimization w.r.t. v:

The problem is decomposed in the Fourier domain [2] as

with the solution for each spatial frequency f :

Finally, we can obtain vk+1 by the inverse 2D DFT.

The code is made available at
github.com/xiuheng-wang

CAVE [3] and Harvard [4].
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