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Introduction Numerical Optimization

1. We introduce a novel strategy for HSI super-resolution that

Variable splitting based on HQS: Optimization w.r.t. X:

X1 1s the solution of the Sylvester equation:
Ci1 X1+ Xe41Co = C3

* makes use of the physical linear degradation model in the data-

X = min |[Y — XBS|? +[|1Z = RX[} + ] D(v - %)
fidelity term of the objective function;

+ v||E(v — %)||? s.t. V =X
exploits the spectral-spatial gradient difference of HSIs using a deep 1

prior reqularizer from the output of an CNN.

where
Ci=R'R+ulg

C, = (BS)(BS)’
C3=R'Z+Y(BS)" +pV,

For a fast algorithm solving this equation, refer to [1].

. . . X1 = min[[Y — XBS||£ + [|Z — RX||£ + p[|X — V[
2. Experimental results show the performance improvement achieved X

with this strategy. Vi1 = min p[xei1 — v[[? + 1||D(v — X)||* 4 v||[E(v — X)||°

Optimization w.r.t. v:

The problem is decomposed in the Fourier domain[2] as

with the solution for each spatial frequency f :

vi = T (Xkp1 5 + 1/ Ap(F)* Ap(F)Xs + ' ESEoks)

The Proposed Method

The scheme of our method:

nlin Ixkr1f — vill® + 1| Ap(F)(vs — %¢)||* + v/ ||Eo(vs — X¢)||° Finally, we can obtain v, by the inverse 2D DFT.

Experimental Results

Deep
learning Table: Averaged RMSE, PSNR, SAM, ERGAS and SSIM of different methods on the CAVE and Harvard data sets.
Methods CAVE data set Harvard data set

RMSE  PSNR  ERGAS SAM  SSIM | RMSE  PSNR  ERGAS  SAM SSIM

UAL 1854 44656  0.196 433 009010 | 1.833 45807 0323 358 00830

UAL + Ours | 1.587 45.939 0.171 4.08 009917 | 1.784 46.034 0316 3.54 0.9833

NSSR 2236 43.430 0244 522 009840 | 1.874 45540 0363  3.73 00821

Deeradation Gpatiotfer ] NSSR + Ours | 2.068 44.044 0.230 5.19 0.9854 | 1.844 45.649 0357 3.69 0.9822

g P Pl TTR 5300 43277 0249 550 009848 | 1.914 45251 0375  3.81 00813

model gradient deviation LTTR + Ours | 2.235 43613 0.243 527 0.9851 | 1.887 45392 0374 3.77 0.9915

UAL+Proposed

UAL UAL+Proposed UAL
The code is made available at SN "7 iy

github.com/xiuheng-wang
J(X) =Y = XBS|[z + |Z — RX][E + ¢(X)
with p(X) = p[[D(x = x)[|” + v[[E(x — x)|

X = cnn(Y, Z) CAVE [3] and Harvard [4].

Object function:

® Table shows that our algorithm
significantly improved the
performance of the baselines.

and

® Figure confirms that our approach
produced smaller reconstruction
errors than the UAL.

Baselines:

UAL [5], NSSR[6] and LTTR[7].

o ||Y — XBS||% and ||Z — RX||%# guarantee that the candidate solution is consistent with
the degradation model
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Figure: Reconstructed images and corresponding error maps of two images from the CAVE data set in the 540 nm band

o |ID(x —x)||? and ||E(x — X)||* are regularization terms exploiting deep priors, with positive
hyper-parameters 11 and v.
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Conclusion

In this paper, we introduced an HSI super-resolution method which makes use of a degradation model in
the data-fidelity term of the objective function and, on the other hand, utilizes the spectral-spatial gradient
deviation of latent HSIs and the output of a convolutional neural network as a deep prior regularizer.
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