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Motivation

Motivation

Coefficients estimation of polynomial regression

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

-1

-0.5

0

0.5

1

1.5

f(x)

y

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

-1

-0.5

0

0.5

1
f(x)

y

g
3
(x)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

-1

-0.5

0

0.5

1
f(x)

y

g
10

(x)
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Motivation Framework

Estimation after model selection

The usual practice:

select a model from a pool of candidate models, based on the data
(e.g. AIC, MDL)

estimate and analyze selected model, disregarding the selection
process (maximum likelihood, least squares)

Applications:
multivariate data analysis, machine learning, graph analysis, ...
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Motivation Framework

Non-Bayesian estimation after model selection

Goal: include model selection process in the analysis and estimation

Previous works on the selection effect:
effects on standard errors [Pöetscher 1991, Efron 2014]

confidence intervals [Benjamini and Yakutieli 2005, Kabaila and Leeb 2006]

Cramèr-Rao bound for signals under unknown model order (SMS) [Sando,

Mitra and Stoica 2002].
Cramèr-Rao bound for estimation after parameter selection [Routtenberg and

Tong 2016, Harel and Routtenberg 2019] - the model is known, selection of parameter
of interest

Our approach:
formulation of non-Bayesian post model selection estimation
coherence
(selective) unbiasedness
(selective) CRB
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Problem Formulation
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Problem Formulation notations

Problem formulation: estimation after model selection

θ = [θ1, . . . , θM ]T ∈ RM - unknown deterministic parameter vector

x ∈ Ωx - random observation vector, which is truly distributed by

f(x;θΛ) - true probability density function

Λ and Λc - the true support of θ and its complement, according to the true
model. s.t. θΛ ∈ R|Λ|, and θΛc = 0

{Λk}k - is the set of all candidate supports, thus

{f(x;θΛk
)}k - set of pdfs, parameterized by θ with the suitable support

from {Λk}k

θ̂ : Ωx → RM - estimator of θ based on x

Λ̂ - the selection rule

πk(θΛ)
4
= Pr(Λ̂ = Λk;θΛ) - the probability of selecting the kth model
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Problem Formulation System diagram

Estimation after model selection:

The measurement vector, x, is generated by the p.d.f., f (x;θΛ), then a
model is selected by a pre-determined selection rule - Λ̂. In the second
stage, the unknown parameter, θ is estimated based on the observation
vector and the selected model.
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Problem Formulation Coherency

Coherence estimation

Theorem

An estimator θ̂ is said to be a coherent estimator with respect to the
selection rule Λ̂, if θ̂Λ̂c = 0

Structure:

a model is selected according to a predetermined data-driven selection
rule, Λ̂

the selected parameters, θ̂Λ̂, are estimated

the deselected parameters are set to be zero, i.e. θ̂Λ̂c = 0
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Problem Formulation ZP-vectors

Zero Padded (ZP) vectors and Dk(Λ) matrix

Definition

For an arbitrary vector, a ∈ RM , and any candidate support set, Λk,
k = 1, . . . ,K, the vector aZP

Λk
, is a zero-padded, M -length vector, whose

non-padded elements correspond to the elements of aΛk
.

Definition

For any k = 1, . . . ,K, the Dk(Λ) is a M × |Λ| matrix with the elements

[Dk(Λ)]m,l

4
=

{
1, m ∈ Λk, m = [Λ]l
0, otherwise

, (1)

∀l = 1, . . . ,M , where [Λ]l denotes the lth element of the true support set
(not to be confused with the lth candidate support set, Λl).
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Selective CRB cost function - motivation

cost function - motivation

The Cramér-Rao bound (CRB) provides a lower bound on the mean
squared error (MSE) of any mean-unbiased estimator and is used as a
benchmark in non-Bayesian estimation

The conventional CRB does not take into account the selection
process, thus, it is inappropriate for estimation after model selection

We wish to derive a CRB-type bound that takes into account the
selection process
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Selective CRB cost function - motivation

The Cramér-Rao bound (CRB) provides a lower bound on the mean
squared error (MSE) of any mean-unbiased estimator

The term mean square error (MSE) refers to the squared mean difference
between the estimated and true values. Although this cost function is
widely used in non-Bayesian estimation, it does not include the model
selection procedure therefore neglects the selection process
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Selective CRB Cost function - Proposition

Novel cost function
Selected-square-error (SSE) matrix, and the corresponding mean SSE
(MSSE)

Proposition (selected-square-error matrix)

C(θ̂, Λ̂,θ)
4
=
(
θ̂

ZP

Λ̂ − θZP

Λ̂

)(
θ̂

ZP

Λ̂ − θZP

Λ̂

)T
(2)

Proposition (mean-selected-squared-error)

EθΛ

[
C(θ̂, Λ̂,θ)

]
=

K∑
k=1

πk(θΛ)EθΛ

[
(θ̂

ZP

Λk
− θZP

Λk
)(θ̂

ZP

Λk
− θZP

Λk
)T |Λ̂ = Λk

]
(3)

A scalar version is available in the article
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Selective CRB Cost function - Proposition

The Cramér-Rao bound (CRB) provides a lower bound on the mean
squared error (MSE) of any mean-unbiased estimator

Mean-unbiasedness (unbiasedness) considers the estimated, and expected
values, but does not include the model selection procedure.
Moreover, most post selection estimator tend to bias, making the CRB
unsuitable for our use case.
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Selective CRB Selective unbiased

Proposition (Selective Unbiasdness)

An estimator, θ̂, is an unbiased estimator for the problem of estimating
the true parameter vector, θΛ, in the Lehmann sense w.r.t. the SSE
matrix defined earlier, and the selection rule, Λ̂, iff

bk(θ,Λ)
4
= EθΛ

[
θ̂

ZP

Λk
− θZP

Λk
|Λ̂ = Λk

]
= 0,∀θZP

Λk
∈ R|Λ|, (4)

for all k = 1, . . . ,K, such that πk(θΛ) 6= 0.

proof appears in the article, Appendix A
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Selective CRB Selective unbiased

In practice, coherent post model selection estimators tend to be biased.
Thus (4) is not zero

Proposition (Selective bias)

bk(θ,Λ)
4
= EθΛ

[
θ̂

ZP

Λk
− θZP

Λk
|Λ̂ = Λk

]
6= 0,∀k = 1, . . . ,K, (5)

while its derivative w.r.t. the true parameter is defined as

Gk(θ,Λ)
4
= ∇θΛ

bk(θΛ), ∀k = 1, . . . ,K. (6)
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Selective CRB extension to MSE

The selection bias affects the relation between the MSE and the MSSE of
the estimator, as we can see in

Proposition (MSE-MSSE coherent relations)

For any coherent estimator, the MSE satisfies

MSE(θ̂,θ,Λ) = EθΛ

[
C(θ̂, Λ̂,θ)

]
+

K∑
k=1

πk(θΛ)θZP
Λc
k
(θZP

Λc
k
)T

−
K∑
k=1

πk(θΛ)
(
θZP

Λc
k
bT
k (θ,Λ) + bk(θ,Λ)(θZP

Λc
k
)T
)
. (7)

proof appears in the article, Appendix B
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Selective CRB Proposition

Proposition (Selective CRB on the MSSE)

Under regularity conditions, the MSSE of any coherent and selective
biased estimator, with the selective bias from (4), is bounded by

EθΛ
[C(θ̂, Λ̂,θΛ)] � BsCRB(θΛ), (8)

where the biased selective CRB is defined as

BsCRB(θΛ)
4
=

K∑
k=1

πk(θΛ)
[
(DZP

Λk
+ GZP

Λk
)J−1

k (DZP
Λk

+ GZP
Λk

)T
]

(9)
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Selective CRB Proposition

selective CRB

The selective CRB matrix bound

Theorem (sCRB on the MSE)

For any coherent estimator, the MSE satisfies

MSE(θ̂,θΛ) � BsCRB(θΛ) +

K∑
k=1

πk(θΛ)θZP
Λc
k

(
θZP

Λc
k

)T
−

K∑
k=1

πk(θΛ)
(
θZP

Λc
k
bT
k (θ,Λ) + bk(θ,Λ)(θZP

Λc
k
)T
)
.

Proof (Appendix C), and the marginal version appear in the article (Section C)
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Selective CRB Proposition

selective unbiased CRB

The selective CRB matrix bound

Theorem (sCRB on the MSE)

For any coherent and selective unbiased estimator, the MSE satisfies

MSE(θ̂,θΛ) � BsCRB(θΛ) +

K∑
k=1

πk(θΛ)θZP
Λc
k

(
θZP

Λc
k

)T
.
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Examples 1 - GLM

General Linear Model

The General Linear Model (GLM) is given by

its observations ∀k = 1, . . . ,K,

x = HkθΛk
+ w, (10)

the matrices Hk ∈ RN×|Λk|, k = 1, . . . ,K, are assumed to be known
full column rank matrices

θ ∈ RM is a deterministic unknown vector

w is a zero-mean i.i.d. Gaussian random vector, with known variance

the coherent Maximum Selected Likelihood (MSL) estimator, is given
for k = 1, . . . ,K, by

θ̂
ML|k
Λk

=
(
HT

kHk

)−1
HT

k x, (11)

coherecy dictates θ̂Λc
k

= 0
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Examples 1 - GLM

Vs. SNR
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Figure: General linear model with AIC selection rule: MSE, sCRB, SMS-CRB,

oracle CRB, vs. SNR
4
= 10 log 10 ||Hθ||2

Nσ2 , with varying σ, N = 1500 samples,
θ = [4,−3]T , h1 = [1, . . . , 1]T , and the values of h2 are randomly drawn from
uniform distribution in interval [0, 10].
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Examples 1 - GLM

Vs. πk
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Figure: General linear model with AIC selection rule: MSE, sCRB, SMS-CRB,

oracle CRB, vs. SNR
4
= 10 log 10 ||Hθ||2

Nσ2 , with varying σ, N = 1500 samples,
θ = [4,−3]T , h1 = [1, . . . , 1]T , and the values of h2 are randomly drawn from
uniform distribution in interval [0, 10].
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Examples 1 - GLM

Vs. GIC functions
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Figure: General linear model with GIC selection rule: The MSE of the MSL
estimator compared to selective CRB and the SMS-CRB versus different values of
the parameter τ(N, |Λk|), N = 150, with SNR= −3.5dB (left) and 0dB (right).
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Examples 2 - sparse

OST

For sparse vector estimation, we inspect the MSE of

θ̂
ML—OST
Λ̂ =

(
AT

Λ̂
AΛ̂

)−1
AT

Λ̂
x, (12)

where the selection function is OST

m ∈ Λ̂ if |aTmx| > c > 0, ∀m = 1, . . . ,M

and, of course, coherency dictates θ̂
ML—OST
Λ̂c = 0.
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Examples 2 - sparse

1st example
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Figure: θΛ = 1. The MSE of the MSL estimator, sCRB, and oracle CRB under
OST rule, with c = 0.95, versus SNR. Random 7× 14 dictionary, A, aTmam=1,
mutual coherence is µ = 0.5673. |Λ| = 3
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Examples 2 - sparse

2nd example
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Figure: θΛ = 1. The MSE of the MSL estimator, sCRB, and oracle CRB under
OST rule, with c = 0.95. Hadamard 16× 16 dictionary, A, aTmam=1,
σ = 0.1594, 1 ≤ |Λ| ≤ 16
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Examples 3 - biased sCRB

Biased sCRB with identity dictionary, A = I, with L = M .
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Figure: Sparse vector estimation: The MSE of the MSL and of the post-selection
conditional ML (CML) estimators, where the likelihood is selected by the OST
rule, the selective CRB, the biased selective CRB with the MSL bias, b1-sCRB,
the biased selective CRB with the CML bias, b2-sCRB, and the oracle CRB, versus
the threshold, c, for 1) θm = 1, σ = 0.4 (left); 2) θm = 0.5, σ = 1.2 (right).
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Examples Conclusion

Conclusion

formulation of coherent estimation after model selection

a measure of performance - selected-square-error is considered

a Lehmann-sense selective unbiasedness definition is introduced

an appropriate selective Cramér Rao Bound is derived, with its biased
version and for sparse vector estimation

simulations show that the selective CRB is valid, and tighter than the
SMS-CRB, and predicts the threshold phenomenon
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