UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING

Sanyuan Chen^{1,2}, Yu Wu², Chengyi Wang², Zhengyang Chen², Zhuo Chen², Shujie Liu², Jian Wu², Yao Qian², Furu Wei², Jinyu Li², Xiangzhan Yu¹

¹Harbin Institute of Technology, China, ²Microsoft Corporation

Accepted by ICASSP 2022

Code: https://github.com/microsoft/UniSpeech

Self-Supervised Learning

- Self-supervised learning (SSL) has achieved great successes in NLP and CV, especially for limited resource tasks.
 - SSL utilizes a large amount of unlabeled data to learn universal representation
 - The universal representation with outstanding generalizability, re-usability, and effectiveness can significantly benefit various downstream tasks
- Common practice:
 - 1. Optimize the pre-train model with SSL objective on the large-scale unlabeled data
 - 2. Optimize the downstream model on the various downstream annotated dataset, where the input feature is the universal representation extracted from the pre-trained model.

• SSL in **Speech**:

- We have witnessed great success of SSL in **content related task.**
 - e.g. wav2vec 2.0/HuBERT SSL model in speech recognition task.
- Can we also apply SSL in **speaker related task**?
 - e.g. speaker verification, diarization task

Speaker Aware Pre-Training

- Can we apply SSL in both **content related task** and **speaker related task**?
- UniSpeech-SAT
 - Universal Speech representation learning with Speaker Aware pre-Training
 - Aiming to improve existing SSL framework for speaker representation learning.

• Methods:

- Mask prediction loss (from HuBERT)
- Utterance-wise contrastive loss
- Utterance mixing augmentation
- Large and diverse pre-training data

- -> content representation learning
- -> single-speaker representation learning
- -> multi-speaker representation learning
- -> robust representation learning

Mask prediction loss (from HuBERT)

- State-of-the-art SSL method for content representation learning
- Main idea: conduct iterative offline clustering to provide target labels and perform BERT-like mask prediction loss.

• Steps:

- 1. Conduct **k-means clustering** on the MFCC feature of input signals
- 2. Set the **clustering center** of each input frame as the **pseudo target label**
- 3. Train a Transformer-based model with the **mask prediction loss**, where the Transformer encoders are fed with the masked input features \tilde{X} , and predict the pseudo target label z_t in the masked region M

 $\mathcal{L}_{\text{Content}} = -\sum_{t \in M} \log f(z_t | \tilde{X}, t)$

4. Given the pre-trained model, we conduct **k-means clustering** on the **latent representations** generated by the pre-trained model, and start a new iteration from step 2

Utterance mixing augmentation

Large and diverse pre-training data

- **Previous works** only use the audiobook speech for pre-training, which limits the generalizability of the pre-trained speech representation in diverse scenarios.
- Towards robust speech representation learning, we scale up unlabeled pre-training data to 94k hours of public audios from diverse domains
 - 10K hours **Gigaspeech** data, from audiobooks, podcasts and YouTube.
 - 24K hours VoxPopuli data, from European Parliament (EP) event recordings.
 - 60k hours **LibriVox** data, from audiobooks

Experiments

• Universal Representation Evaluation with **SUPERB**

• Ten speech tasks

- Speaker related tasks:
 - Speaker Identification (SID), Automatic Speaker Verification (ASV), Speaker Diarization (SD)
- Content related tasks:
 - Phoneme Recognition (PR), Automatic Speech Recognition (ASR), Keyword Spotting (KS) Query by Example Spoken Term Detection (QbE)
- Semantic related tasks:
 - Intent Classification (IC), Slot Filling (SF)
- Paralinguistics related tasks
 - Emotion Recognition (ER)

Experiments

- Universal Representation Evaluation with **SUPERB**
- Policies
 - The design of task specific layers follows the SUPERB official implementations for each downstream task.
 - Pre-trained models are frozen to limit the space of the fine-tuning hyperparameter search
 - The task specific layers consume the weighted sum results of the hidden states extracted from each layer of the pre-trained model

Universal Representation Evaluation Results

Table 1: Universal speech representation evaluation on SUPERB benchmark. The overall score is computed by ourselves: we multiply the QbE score with 100, replace each error rate score with (1 - error rate), and average the scores of all tasks.

	#Params	Corpus	Speaker			Content					Semantics			ParaL	Overall
Method			SID	ASV	SD	PR	ASR (WER)		KS	QbE	IC	SF		ER	
			Acc \uparrow	EER \downarrow	$\text{DER}\downarrow$	$\text{PER}\downarrow$	w/o↓	w/ LM \downarrow	Acc \uparrow	MTWV ↑	Acc \uparrow	F1 ↑	$\text{CER}\downarrow$	Acc \uparrow	Score ↑
FBANK	-	-	8.5E-4	9.56	10.05	82.01	23.18	15.21	8.63	0.0058	9.10	69.64	52.94	35.39	44.2
PASE+ [14]	7.83M	LS 50 hr	37.99	11.61	8.68	58.87	25.11	16.62	82.54	0.0072	29.82	62.14	60.17	57.86	57.5
APC [8]	4.11M	LS 360 hr	60.42	8.56	10.53	41.98	21.28	14.74	91.01	0.0310	74.69	70.46	50.89	59.33	67.6
VQ-APC [10]	4.63M	LS 360 hr	60.15	8.72	10.45	41.08	21.20	15.21	91.11	0.0251	74.48	68.53	52.91	59.66	67.2
NPC [11]	19.38M	LS 360 hr	55.92	9.40	9.34	43.81	20.20	13.91	88.96	0.0246	69.44	72.79	48.44	59.08	67.0
Mockingjay [12]	85.12M	LS 360 hr	32.29	11.66	10.54	70.19	22.82	15.48	83.67	6.6E-04	34.33	61.59	58.89	50.28	56.1
TERA [13]	21.33M	LS 360 hr	57.57	15.89	9.96	49.17	18.17	12.16	89.48	0.0013	58.42	67.50	54.17	56.27	64.2
modified CPC [2]	1.84M	LL 60k hr	39.63	12.86	10.38	42.54	20.18	13.53	91.88	0.0326	64.09	71.19	49.91	60.96	65.1
wav2vec [3]	32.54M	LS 960 hr	56.56	7.99	9.90	31.58	15.86	11.00	95.59	0.0485	84.92	76.37	43.71	59.79	71.5
vq-wav2vec [4]	34.15M	LS 960 hr	38.80	10.38	9.93	33.48	17.71	12.80	93.38	0.0410	85.68	77.68	41.54	58.24	69.3
wav2vec 2.0 Base [5]	95.04M	LS 960 hr	75.18	5.74	6.02	6.08	6.43	4.79	96.23	0.0233	92.35	88.30	24.77	63.43	80.3
HuBERT Base [6]	94.68M	LS 960 hr	81.42	5.11	5.88	5.41	6.42	4.79	96.30	0.0736	98.34	88.53	25.20	64.92	82.0
UniSpeech-SAT Base	94.68M	LS 960 hr	85.76	4.31	4.41	5.40	6.75	4.86	96.75	0.0927	98.58	88.98	23.56	66.04	83.0
 – contrastive loss 	94.68M	LS 960 hr	84.74	4.61	4.72	5.22	6.80	5.17	96.79	0.0956	98.31	88.56	24.00	65.60	82.8
 utterance mixing 	94.68M	LS 960 hr	85.97	4.35	5.87	5.06	7.04	5.05	96.88	0.0866	98.10	88.50	24.52	65.97	82.7
UniSpeech-SAT Base+	94.68M	CD 94k hr	87.59	4.36	3.80	4.44	6.44	4.88	97.40	0.1125	98.84	89.76	21.75	68.48	84.0
wav2vec 2.0 Large [5]	317.38M	LL 60k hr	86.14	5.65	5.62	4.75	3.75	3.10	96.6	0.0489	95.28	87.11	27.31	65.64	82.1
HuBERT Large [6]	316.61M	LL 60k hr	90.33	5.98	5.75	3.53	3.62	2.94	95.29	0.0353	98.76	89.81	21.76	67.62	83.5
UniSpeech-SAT Large	316.61M	CD 94k hr	95.16	3.84	3.85	3.38	3.99	3.19	97.89	0.0836	99.34	92.13	18.01	70.68	85.6

Analysis

- Layer contribution to different tasks
 - Shallow layers contribute more to the speaker related tasks
 - Top layers contribute more to the content and semantic related tasks

Analysis

- Affect of different ratios of mixing utterances
 - Utterance mixing is still effective for 94k hours setting
 - Speaker related task benefit from larger mixing ratio
 - Content related task benefit from smaller mixing ratio

-	Ratio	Speaker	Co	ontent	Semantics	ParaL
Method		SD	ASR (WER)		IC	ER
		DER \downarrow	w/o↓	w/ LM ↓	Acc \uparrow	$Acc \uparrow$
HuBERT Base [6]	-	5.88	6.42	4.79	98.34	64.92
	0.0	5.04	6.39	4.76	99.24	66.32
UniSpeech-SAT Base+	0.2	3.80	6.44	4.88	98.84	68.48
	0.5	3.73	6.65	5.18	99.29	67.36

Table 2: Results of UniSpeech-SAT Base+ with various mix-ing ratios on 94k hours training data.

Conclusion

- In this work, we propose a **speaker aware pre-training method** which is complementary to current ASR oriented pre-training.
- The evaluation on the SUPERB benchmark shows our universal speech representation achieves **state-of-the-art overall performance** and outperforms other baselines by a large margin.
- This work is extended to a journal paper WavLM
 - SOTA results on all the 10 tasks of SUPREB.
 - SOTA results on 4 typical speech tasks from different speech aspects
 - speaker verification, speech separation, speaker diarization and speech recognition
 - Paper: <u>https://arxiv.org/pdf/2110.13900.pdf</u>
 - Code: <u>https://aka.ms/wavlm</u>

Thanks!