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Motivating remarks

Motivations

In many applications (brain networks, social and communication
networks) the topology associated with data may undergo perturbations
in an unknown manner

How design FIR filters robust to graph and simplices perturbations
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Motivations

State of art:

- FIR filters over graphs: A. Sandryhaila et al. (2014), S. Segarra et al.
(2017), J. Liu et al. (2018)...

- Filtering over simplicial complexes: J. Jia et al. (2019), M.T. Schaub et al.
(2020), M. Yang et al. (2021), S. Sardellitti and S. Barbarossa (2022)...

- Stability to perturbations of graph FIR filters: F. Gama et al. (2020), H.
Kenlay et al. (2020)...

- Small perturbation analysis in GSP: E. Ceci and B. Barbarossa (2020), J.
Miettinen at al. (2021)...

Our novel contribution

Design of robust FIR filters over graphs and simplicial complexes hinging
on small perturbation analysis of the Laplacian eigenvectors

Impact of perturbation on Laplacian kernel dimension
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Introduction to TSP

Topological signal processing (TSP) provides tools for the processing of signals
defined over simplicial complexes

An abstract simplicial complex is a
finite collection of subsets (simplices)
of various cardinality of the elements
of a set of vertices V satisfying the
inclusion property

Combinatorial first-order Laplacian matrix

L1 = BT
1 B1︸ ︷︷ ︸
Ld

1

+B2B
T
2︸ ︷︷ ︸

Lu
1

with

- B1 ∈ RN×E : nodes-edges incidence matrix
- B2 ∈ RE×T : edges-triangles incidence matrix

It holds B1B2 = 0

Nodes, edges and triangles signals can be defined over a simplicial complex
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Topological domain perturbation

Graph perturbation: Given a nominal graph G = {V, E} with Laplacian
L0 = B1B

T
1 a few edges are added or removed

Simplicial perturbation: Given a nominal simplicial complex X = {V, E , T }
with Laplacian L1 = BT

1 B1 +B2B
T
2 a few triangles are added or removed

What is the impact of the domain perturbation on the perturbed Laplacian
eigenpairs?
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Graph perturbation

Perturbed graph Laplacian: L̃0 = L0 +∆L0 = Ũ0Λ̃0Ũ
T
0

Perturbed eigenvectors and eigenvalues:

ũ0
i = u0

i + δu0
i , λ̃0

i = λ0
i + δλ0

i

If all λi(L0) are distinct, we may use the first-order analysis developed in E. Ceci
and B. Barbarossa (2020)

Perturbation of the mth link: ∆L0,m = σmb1mb1T
m

- σm = 1,−1 if the edge m is added or removed from graph
- b1m ∈ RN : column m of B1

Approximate perturbations:

δλ0
i,m =σmu0

i
T
b1mb1T

m u0
i = σmqi,m

δu0
i,m =σm

N∑
j=2,j ̸=i

u0
j
T
b1mb1T

m u0
i

λ0
i − λ0

j

u0
j = σm

N∑
j=2,j ̸=i

c
(m)
ji u0

j ,

where qi,m = u0
i
T
b1mb1T

m u0
i is the square norm of the gradient of u0

i

7/19



Graph perturbation

Perturbed graph Laplacian: L̃0 = L0 +∆L0 = Ũ0Λ̃0Ũ
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Graph perturbation

Review:

FIR graph filter H of order L:

H =
L∑

n=0

anL
n
0

GFT of the output vector: ŷ =
∑L

n=0 anΛ
n
0 x̂ := diag(h)x̂

where diag(h) is the desired frequency response of the filter

Filter coefficients: solutions of a least squares problem

min
a∈RL

∥ h−Φ a ∥2F

with Φ = [1,λ0, . . . ,λ
L
0 ], λ

k
0 = {(λ0

i )
k}Ni=1, k = 1, . . . , L

Optimal least squares solution: a = Φ†h
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Graph perturbation

Our goal: Use small perturbation analysis to design robust FIR filters for signals
defined over perturbed graphs

Assume a small subset Ep of edges are added to the graphs and the random variables
σm are i.i.d. with σm = 1 w.p. pm and σm = 0 w.p. 1− pm, we find

E[δλ0
i ] =

∑
m∈Ep

pmqi,m, E[∆U0] =
∑

m∈Ep

pmU0Cm

E[(δλ0
i )

2] =
∑

m∈Ep

pm(qi,m)2 +
∑

m,n,m ̸=n∈Ep

pmpnqi,mqi,n

Robust FIR filter coefficients as solutions of the problem

min
ã∈RL

E[∥ h̃− Φ̃ã ∥2F ]

with h̃ = h(λ̃0), h(λ) : R → R the frequency response of the filter,

Φ̃ = [1, λ̃0, . . . , λ̃
L

0 ]

Optimal solution ã = E[Φ̃
T
Φ̃]−1E[Φ̃

T
h̃]

We derived approximated closed form for the average matrix G1 = E[Φ̃
T
Φ̃] and the

vector g1 = E[Φ̃
T
h̃]
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Numerical results

Averaged error in the estimation of the coefficients of a FIR filter, assuming the
perturbation perfectly known or by using the closed form solutions

1 2 3 4 5 6 7

Filter length

10
-6

10
-5

10
-4

Simulation setting: the
edges of a graph with
two clusters, each with
20 nodes, are perturbed
w.p. p = 0.01

The closed form solutions provide an accurate estimation of the filter coefficients

10/19



Graph perturbation

In the above analysis we assumed:

the eigenvalues are all distinct

the graph undergoes small perturbations of its edges by preserving its
connectivity, i.e. the Laplacian kernel dimension

If the removed edges disconnect the graph, we use the approach in U. Von Luxburg
(2007):

Instead of completely removing critical edges we assign them a low weight

Measure the distance between the subspaces associated with the smallest
eigenvalues of the nominal and perturbed Laplacians
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Perturbed simplicial complexes

Assumptions: The matrix B1 is perfectly known and there may be uncertainties
about the presence of (filled) triangles, i.e. about the matrix B2

If a triangle is removed/added the upper Laplacian Lu
1 is perturbed

L̃
u
1 = Lu

1 +∆Lu
1 = Lu

1 +
∑

m∈Tp

tmb2mb2T
m

with b2m the column m of B2 and tm = −1 (or 1) if the m-th triangle is removed (or
added)

Approximate perturbation of the eigenpairs

Let Lu
1 = Uu

1ΛuU
uT
1 with Uu

1 containing the eigenvectors associated with the
non-zeros eigenvalues λ1

i

δλ1
i,m= tm

(
3∑

l=1

b2ml
u1
i (ml)

)2

= tmq1i,m, δu1
i,m = tm

ru∑
j=1,j ̸=i

u1
j
T
b2mb2T

m u1
i

λ1
i − λ1

j

u1
j

where q1i,m =
(∑3

l=1 b
2
ml

u1
i (ml)

)2
is the square of the curl of u1

i along the triangle m

Remark: The eigenvector u1
i does not perturb the eigenpairs if its curl along the

altered triangle is zero
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Perturbed simplicial complexes

Differently from graphs in simplicial complexes the removal/addition of any
triangle increases/decreases the dimension of ker(L1)

If we remove/add a triangle that shares only vertices but no edges with the
other triangles then the perturbed Laplacian L̃

u
1 preserves the same eigenpairs

of Lu
1

The perturbation depends on the number N2 of 2-simplices (triangles)
lower-adjacent with each triangle
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Perturbed simplicial complexes

For large perturbation we generalize the approach proposed in U. Von Luxburg
(2007) to simplicial complexes:

To keep the homology of the complex approximately unaltered, the
addition/removal of triangles is controlled by assigning them a small positive
weight α

The perturbation of the upper Laplacian is ∆Lu
1 =

∑
n∈Tp

tnαb
2
nb

2T
n

Measure the distance between the subspaces spanned by the eigenvectors of the
nominal and perturbed Laplacians

The distance between the subspaces spanned by the orthonormal matrices A,P,
is defined as

d(A,P) =∥ sin(θ) ∥F /c

where θi = acos(σi) with σi the singular values of the matrix ATP and c > 0 a
normalization coefficient
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Perturbed simplicial complexes

Subspace distance versus α

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

S, S̃ and S̃an are the
subspaces spanned by
the eigenvectors
associated with the
smallest non-zero
eigenvalues of,
respectively, Lu

1 , L̃
u
1 and

the upper Laplacian
L̃

u
1,a derived from the

formulas

The subspace distance is averaged over 100 random SCs

The derived formulas can still be used when the complex is near to be altered (α
near to 1)
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Perturbed simplicial complexes

Extension to Solenoidal FIR filter:

Ĥu =

L∑
n=1

ãu
n(L̃

u
1 )

n

The filter coefficients are derived as the solution of the mean squares problem

min
ãu∈RL

E[∥ h̃u − Φ̃u ãu ∥2F ]

with h̃u = h(λ̃u), Φ̃u = [λ̃u, . . . , λ̃
L

u ]

The constant vector 1 in Φ̃u is omitted to leave out the harmonic component from
the filtering (S. Sardellitti and S. Barbarossa, 2022)

Optimal solution ãu = E[Φ̃
T
u Φ̃u]

−1E[Φ̃
T
u h̃u]

We derived closed formulas for E[Φ̃
T
u Φ̃u] and the vector E[Φ̃

T
u h̃u]
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Numerical results

Error of the solenoidal filter output with respect to the ideal desired filter H̃u with
known perturbation, versus the filter length

1 2 3 4 5 6 7 8 9 10
Filter length

0

0.5

1

1.5

2

2.5

3

3.5

Simulation settings:
Starting from a nominal
SC having all its T = 80
triangles filled, we
removed some triangles
w.p. p = 0.01

The proposed method provides the same performance of the case where the
perturbation is perfectly known
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Conclusions

We investigated the impact of small perturbations of graphs and
simplicial complexes on the robustness of FIR filters

Hinging on small perturbation analysis we derived closed form expressions
for the Laplacian eigenpairs which are useful to design robust FIR filters

We showed how to deal with perturbations altering the dimension of the
signal subspaces

Future developments: improve performance by developing a second-order
approximation of the eigenvectors of the perturbed Laplacian
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Thanks for your attention!
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