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SPECTROGRAM-BASED LOSSES
o standard regression losses on the

ABSTRACT
We Iinvestigate which loss functions provide better L1 L2

MEAN OPINION SCORES

freq
separations via benchmarking an extensive set of
those for music source separation. To that end, we first
survey the most representative audio source
separation losses we identified, to later consistently
benchmark them in a controlled experimental setup.
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We also explore using such losses as evaluation
metrics, via cross-correlating them with the results of a
subjective test. Based on the observation that the compute SISDR
stdndard s!gnal-to-dlstortlon ratio metric can .be LOGL1. . LOGL?2
misleading in some scenarios, we study alternative freq fre
evaluation metrics based on the considered losses. L1geq@nd L2, o

CORRELATION OF LOSS-BASED
EVALUATION METRICS WITH MOS
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EXPERIMENTAL SETUP

TIME-DOMAIN LOSSES e We train Open-Unmix models on MUSDB18 dataset
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o L1. L2 :standard regression losses e \We evaluate: 535533 3 : $
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e SDSDR, : scale-dependant SDR O I\/Iean _Opllnlon Scores (MOS) of the most
LOGL1, ,LOGL2, :log-compressed variants of promising I0Sses
) 1 and LD ime: OYTOMIP o Loss-based metrics (training objectives used as DISCUSSION
time ANd L&y o evaluation metrics) for cross-correlating with MOS e Objectively, best losses are: L2, . SISDR_,

LOGL1 and Adversarial.
° Subjectlvely, best losses are: LOGL1,
e Overall, we recommend L2 SISDR

DEEP-FEATURE LOSS
L2-based loss functions on embeddings of the
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