Watermarking Images in Self-Supervised Latent Spaces

Pierre Fernandez^{1,2}, Alexandre Sablayrolles¹, Teddy Furon², Hervé Jégou¹, Matthijs Douze¹

- ¹ Meta Al
- ² Univ. Rennes, Inria, CNRS, IRISA

https://github.com/facebookresearch/ssl_watermarking

Introduction

Motivation: Watermarking

Introduction

Motivation: Concrete Applications

Copyright Protection

0100101001

0100101001

Content is shared and modified from user to user

Mark remains unchanged → **content authenticity**

Content Tracing

From: Atthijs Douze et al. 2021. *"The 2021 Image Similarity Dataset and Challenge" In arXiv* Introduction

Watermarking: 3 Objectives

- Imperceptibility 1. Image distortion must be low
- 2. Capacity The message to hide can be long enough
- 3. Robustness

- Existing approaches:
 - \circ [\equiv Cox et al. 2007] \rightarrow High capacity but robustness

specialized for **some transformations**

 \circ [\equiv Luo et al. 2020] \rightarrow **Deep Learning** methods specialized for robust watermarking Still lack robustness + guarantees

The message must be recovered even if the image is transformed

Method

Self-Supervised Learning

- Motivation:
 - use intrinsic robustness of SSL neural networks to image transformations
 - does not suffer from semantic collapse of supervised learning (learns more than ImageNet classes only)
 - \rightarrow Latent space with more **capacity**
- SSL with DINO

[Mathilde Caron et al. 2021, "Emerging Properties in Self-Supervised Vision Transformers."

Method

Watermarking in the Latent Space of a Network

- Method:
 - Ο

- - \rightarrow Data augmentation

 \rightarrow Fixed **SSL** Network

Method baked on [📄 Vukotić et al.. 2020 "Are Classification Deep Neural Networks Good for Blind Image Watermarking?"]

6

Method

Watermarking in the Latent Space of a Network

- Method:
 - Mark in the latent space of a self-supervised neural network Ο
 - Simulate transformation at marking time in the pre-processing module Ο

Example of 2-bits encoding with our method

$$\mathcal{L}_w(x) = \frac{1}{k} \sum_{i=1}^k \max\left(0, \mu - (x^\top a_i) . m_i\right)$$

7

Examples

PSNR=28db

PSNR=40db

PSNR=52dB

Examples

1024x768

Influence of SSL and Data-augmentation

• **O-bit** - example of the **robustness to rotation**

(i): Data augmentation both at network's training and marking time

(ii): SSL \rightarrow better semantic space

Setup: 1k images from YFCC, PSNR=42dB, FPR=10⁻⁶

Previous work from:

[Vukotić et al.. 2020 "Are Classification

Deep Neural Networks Good for Blind Image Watermarking?"]

VS state-of-the-art

• O-bit

True positive rate for different attacks on the watermarked images:

Transformation	ld.	Rot. (25)	Crop (0.5)	Crop (0.1)	Resize (0.7)	Blur (2.0)	JPEG (50)	Bright. (2.0)	Contr. (2.0)	Hue (0.25)	Meme	Screen
Ours	1	1	1	0.98	1	1	0.97	0.96	1	1	1	0.97
Vukotic et al.	1	≈ 0.3	≈ 0.1	≈ 0.0	-	-	≈ 1.0	_	-	-	-	-
Vukotic et al. (our implementation)	1	0.27	1	0.02	1	0.25	0.96	0.99	1	1	0.98	0.86

Setup: 118 images from CLIC, PSNR=42dB, FPR=10⁻³

VS state-of-the-art

• Multi-bit

Bit accuracies in % for different attacks on the watermarked images: (50% is no better than chance)

Attack	None	JPEG (Q=50)	Blur (σ=1)	Resize (0.7)	Crop (0.1)	Hue (0.2)
Ours on COCO - not resized	100	96	100	100	82	97
Ours on COCO resized to 128x128	100	85	99	84	45	95
HiDDeN - Zhu et al. 2018 on COCO resized to 128x128	100	77	99	85	100	75
Dist. Agnostic - Luo et al. 2020 on COCO resized to 128x128	100	82	93	88	98	94

Setup: 1k images from COCO, PSNR=33dB, K_{bits}=30

Key takeaways and future work

- Self-supervised embedding spaces are excellent [DINO]
- **Data augmentation** at **training** <u>AND</u> **marking** time
- Significant improvement over state-of-the-art on O-bit watermarking Multi-bit extension: on-par with SOTA

- Watermarking in forward pass only
- **Specific** training for watermarking