Summary

Context: Robust watermarking and data hiding

- Trade-offs: imperceptibility, payload, robustness
- Deep watermarking architectures require heavy training & lack robustness

Our contributions:

- Encode marks or binary messages in the latent space of any pre-trained network
- Leverage data augmentation at marking time
- Self-supervision \rightarrow excellent embedding spaces

Method overview

The method is made of:

- A neural network trained with self-supervision that extracts features from images
- An embedding process that shifts the features into a well-specified region of the latent space
- A decoding step that happens in the same latent space

Feature extraction

Self-Supervised Pre-Training

Teacher-Student approach with DINO [1]:

- different augmented views of the same image, stronger for student than teacher
- pretext task: match output of student and teacher

Motivations behind the use of SSL

- + leverage inherent robustness to data augmentations.
- + SSL is fine grained (captures more than classes only) and does not suffer from the semantic collapse that happens because of supervised learning
- \rightarrow latent space with more bandwidth.

Latent space normalization with whitening

Features output by the neural network are not well distributed.

 \rightarrow Apply PCA whitening transformation *at marking time* for the features to have zero mean and identity covariance.

Qualitative results

Figure 1. Image (800x600) watermarked at PSNR=40 dB and FPR=10⁻⁶, and some attacked versions of the image, where the mark is detected by the hypercone detector

Figure 2. Image (1024x768) watermarked at PSNR=40 dB and a payload of 30 bits, and decoded messages

Embedding process

Goal: take image I_0 and output visually similar I_w carrying the mark/message. Gradient descent over image pixels:

Algorithm One iteration of the embedding algorithm

- Impose perceptual constraints (SSIM and PSNR filters) $\triangleright I_w \stackrel{\text{constraints}}{\longleftarrow} I_w$
- 2: Sample data-augmentation and apply it to the image $\triangleright I_w \leftarrow \text{Tr}(I_w, t)$; $t \sim \mathcal{T}$
- 3: Compute loss (ϕ is the feature extractor) $\triangleright \mathcal{L} \leftarrow \lambda \mathcal{L}_w(\phi(I_w)) + ||I_w I_0|||$
- 4: Update the image with GD

 $\triangleright I_w \leftarrow I_w + \eta \times \operatorname{Adam}(\mathcal{L})$

Hypercone detector

Secret key $a \in \mathcal{F}$; ||a|| = 1, dual hypercone: $\mathcal{D} := \{x \in \mathbb{R}^d : ||x^T a|| > ||x|| \cos(\theta)\}$

Objective function: "how far the feature lies from the hypercone"

$$-\mathcal{L}_w(x) = R(x) = (x^{\top} a)^2 - ||x||^2 \cos^2 \theta.$$

Theoretical guarantees on the False Positive Rate (FPR):

$$FPR := \mathbb{P}\left(\phi(I) \in \mathcal{D} \mid \text{``key } a \text{ is uniformly distributed''}\right) = 1 - I_{\cos^2(\theta)}\left(\frac{1}{2}, \frac{d-1}{2}\right)$$

Hyperspace decoding

Secret key: randomly sampled orthogonal family of carriers $a_1,, a_k \in \mathbb{R}^d$. Modulation of message $m = (m_1, ..., m_k) \in \{-1, 1\}^k$ into the signs of the projection of the feature $\phi(I)$ against each of the carriers. Decoded message:

$$\hat{m} = D(I) = \left[\text{sign} \left(\phi(I)^{\top} a_1 \right), ..., \text{sign} \left(\phi(I)^{\top} a_k \right) \right].$$

Objective function: hinge loss with margin $\mu \geq 0$ on the projections

$$\mathcal{L}_w(x) = \frac{1}{k} \sum_{i=1}^k \max\left(0, \mu - (x^{\mathsf{T}} a_i).m_i\right).$$

International Conference on Audio, Speech and Signal Processing (ICASSP) 2022, Singapore

Impact of SSL and data augmentation

True Positive Rate (TPR) of detection on 1k images from YFCC, at PSNR= 40dB and FPR= 10⁻⁶, against different rotation angles.

- \rightarrow SSL alone greatly improves watermarks' robustness against attacks.
- → Adding augmentation during both network's training and marking stages also does.

Trade-off on image quality

TPR of detection at FPR= 10^{-6} against different attacks.

PSNR ranging from $52\,dB$ to $32\,dB$. Lower PSNR \to more robustness. Remarks: Similar trade-offs w.r.t. FPR and payload - Applies for multi-bit.

Our approach VS the state of the art

TPR on 118 CLIC images, at PSNR \geq 42 and FPR= $10^{-6} \rightarrow$ Noticeable improvement w.r.t. [3].

Multi-bit watermarking (data hiding)

Table 2. ‡ denotes transformations used in the embedding process.

Bit Error Rate (BER) on 1k COCO images resized to 128x128, at $PSNR \ge 33$, and with a payload of 30 bits. \rightarrow Results comparable to [2, 4], better for JPEG (never seen at train nor at mark time).

References

- [1] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerging properties in self-supervised vision transformers. *ICCV*, 2021.
- [2] Xiyang Luo, Ruohan Zhan, Huiwen Chang, Feng Yang, and Peyman Milanfar. Distortion agnostic deep watermarking In CVPR, 2020.
- [3] Vedran Vukotić, Vivien Chappelier, and Teddy Furon. Are classification deep neural networks good for blind image watermarking? *Entropy*, 2020.
- [4] Jiren Zhu, Russell Kaplan, Justin Johnson, and Li Fei-Fei. Hidden: Hiding data with deep networks. In ECCV, 201

