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ABSTRACT

Inspired by deep learning applications in structural mechan-
ics, we focus on how to train two predictors to model the re-
lation between the vibrational response of a prescribed point
of a wooden plate and its material properties. In particular,
the eigenfrequencies of the plate are estimated via multilinear
regression, whereas their amplitude is predicted by a feed-
forward neural network. We show that labeling the train set
by mode numbers instead of by the order of appearance of
the eigenfrequencies greatly improves the accuracy of the re-
gression and that the coefficients of the multilinear regressor
allow the definition of a linear relation between the first eigen-
frequencies of the plate and its material properties.

Index Terms— machine learning, musical acoustics, ma-
terial characterization, feedforward neural network

1. INTRODUCTION

Machine learning has been increasingly employed in the field
of structural mechanics, proving to be able to greatly acceler-
ate the characterization of a material [1, 2] and the detection
of damages on a solid body [3]. Also musical instruments can
benefit from machine learning [4, 5]. In particular, we have
started to develop a data-driven approach for musical acous-
tics, including the definition of a parametric mesh of the violin
top plate [6], the use of neural networks to accelerate the pre-
diction of the eigenfrequencies of the violin top [7] and their
application for updating-based optimization algorithms [8].

In this article we go beyond the state of the art, show-
ing that a neural network can learn also part of the modal
response of a wooden body. By simulating the measurement
of a Frequency Response Function (FRF) at prescribed points
of a wooden thin plate for varying mechanical parameters,
we train a network to estimate not only the eigenfrequencies,
but also the magnitude of the modes in the FRF. In particular,
the accuracy of the prediction of frequency and magnitude is
studied with three datasets differing in the distribution of their
input parameters. It is noteworthy that labeling the train set by
mode numbers allows to greatly enhance the accuracy of the

neural network with respect to the one obtained with a train
set sorted by the ascending order of the eigenfrequencies.

We propose the case study of a wooden thin plate of con-
stant geometry since the construction of the guitar family in-
struments starts from wooden plates of standardized shape.
As a result, the first crucial decision of the guitar making pro-
cess is the selection of a plate with desirable elastic constants
[9, 10, 11]. The use of the predictors presented in this paper
for optimization tasks opens the door to the use of artificial
intelligence powered tools for wood characterization in the
workshop of future instrument makers.

The paper is organized as follows: in Sec. 2 an in-depth
description of the datasets is provided. In Sec. 3 the predic-
tors are introduced and their results are discussed, both for
frequency and amplitude.

2. DATASETS OVERVIEW

One way of characterizing the vibrational behaviour of solids
is measuring their point FRF. The point FRF is a frequency
domain complex-valued transfer function between an input
and an output. Usually, the input is an impulsive force ex-
erted at a given point of the measured body, while the output
is the consequent vibration of another point in terms of ei-
ther displacement, velocity or acceleration. The peaks of the
point FRF are the resonances of the body and each of these
is associated to an eigenfrequency and a modal shape, which
describes how the body vibrates at resonance.

In this work we focus on the point FRF measured at pre-
scribed points of the wooden plate with fixed dimensions
(451 × 190 × 3.5)mm shown in the left part of Figure 1. In
the right part of Figure 1 an example of a point FRF is shown
along with the associated modal shapes. Dark red areas cor-
respond to the nodal lines (i.e. lines of zero displacement)
characterizing the specific mode. The magnitude of the FRF
at the eigenfrequencies is proportional to the product of the
modal shape evaluated at the measurement points [12]. Since
the geometry of each modal shape depends from the plate ma-
terial properties, the relation between the material properties
and the magnitude of the FRF peaks is strongly nonlinear.
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Fig. 1. Left: 3D model of the plate simulated to generate the datasets. The red and blue circles represent the excitation point
and the measurement point, where an impact force is exerted and the velocity of the point is retrieved, respectively. The plate
is in free boundary conditions. Right: simulated point Frequency Response Function (FRF) of the plate for the nominal values
shown in Table 1. The modes depicted in the figure are, from left to right: (1, 1), (0, 2), (1, 2), (2, 0), (2, 1), (2, 2). The
amplitude associated to each eigenfrequency is proportional to the product of the modal shape evaluated at the measurement
points.

Fig. 2. Histogram depicting the distribution of the first four
eigenfrequencies f(1,1), f(0,2), f(1,2) and f(2,0) in the U75

dataset. The modes will not always appear in the same or-
der inside the point FRF, as a result the curves are partially
overlapped. In particular f(2,0) is the most varying eigenfre-
quency as it displays the widest range and overlaps with all
the other modes.

We develop the train sets by simulating the value of the
first four peaks of the point FRF of the plate as the material
parameters vary. In this regard, since wood is an orthotropic
material, ten mechanical parameters are needed to charac-
terize its elastic properties. Namely, we use three Young’s
moduli, three Shear moduli, three Poisson’s Ratios, and the
density. Moreover, we characterize its damping by means of
the Rayleigh damping model [13] and randomly sample the
control variables of the model, α and β, thus including two
additional input parameters. We use for our simulations the
nominal elastic constants of Sitka spruce [14] shown in Table
1 and let the parameters vary around them. For each occur-
rence of the dataset the eigenfrequencies, the modal shapes

and the peak values of the point FRF are computed with Com-
sol Multiphysics® .

The instances in the dataset are randomly sampled from: a
Gaussian distribution centered on the nominal values, whose
standard deviation is 10% of the mean (dataset G10); and
two uniform distributions centered around the nominal values
with their span set to 50% and 75% of the mean, yielding the
U50 and U75 datasets, respectively. Each of the three datasets
contains N = 2500 samples.

Notice that the ordering in which the modes appear along
the frequency axis changes as the mechanical parameters vary
[15]. Figure 2 shows the distribution of the eigenfrequencies
on the frequency axis for the dataset U75. It is clearly visible
that a strong overlap between the distributions exists, gener-
ating the change of order in the frequency associated to the
modes. Each eigenfrequency has a particular distribution pro-
file: while f(1,1) distribution is quite narrow, the one related
to f(2,0) is the largest and intersects all the other ones. Indeed,
in our case study the mode (2, 0) is usually associated to the
fourth peak of the point FRF, but for given values of the input
parameters it can correspond to the second.

In order to avoid outliers and reduce noise in the regres-
sion, we perform a preliminary identification of the modal
shapes by comparing them to a reference set of modal shapes
obtained for the nominal values of Sitka spruce and labelled
by mode numbers. The similarity between the resulting
modal shapes Φ̂ and the reference set Φ is evaluated in terms
of Normalized Cross Correlation (NCC), which is computed
as NCC(Φ̂,Φ) = Φ̂

T
Φ

‖Φ̂‖2‖Φ‖2
. Each modal shape Φ̂ is then

labelled with the reference mode scoring the maximum NCC
value. As a last step, all the occurrences of the dataset dis-
playing either repeated modes or an NCC < 0.9 for at least
one mode are discarded.
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Young’s Moduli Shear Moduli Poisson’s Ratios
EL0 = 10.8 [GPa] GLR0 = 0.061EL0 νLR = 0.467
ER0 = 0.043EL0 GRT0 = 0.064EL0 νRT = 0.372
ET0 = 0.078EL0 GLT0 = 0.003EL0 νLT = 0.435

Table 1. Nominal values of the mechanical parameters of
Sitka spruce, which is commonly employed for the sound-
boards of stringed instruments [16]. Damping is modeled
through Rayleigh damping. The central values of the damp-
ing constants are α0 = 19 and β0 = 10−6. The mean value
of the density comes from measurements on a real plate with
the same geometry and is ρ0 = 400kg/m3.

3. RESULTS

The datasets are employed to train two predictors, a Multiple
Linear Regressor (MLR) [17] for the eigenfrequencies and
a Multilayer Feedforward Neural Network (MFNN) [18] for
the magnitude. The quality of the estimation provided by both
the models is assessed by evaluating the coefficient of deter-
minationR2, which provides a measure of how accurately the
model replicates the observed outcomes [19, 20]. We evaluate
the average coefficient of determination defined as

R2 =
1

4

4∑
i=1

R2
mi

, m = [(1, 1), (0, 2), (2, 1), (2, 0)] (1)

which takes into account the first four modes of the plate, ei-
ther for frequency or amplitude.

3.1. Frequency

The dataset G10 is randomly split into test set (10% of the
samples) and train set (90% of the samples) to study the re-
gression accuracy of the MLR. As a first step, we train the
MLR with and without ordering the train set by modes and
perform an F-test [21]. Testing the MLR for f(2,0) yields
R2

(2,0) = 0.994, F -stat(2,0) = 3228 and p-value(2,0) ≈ 0.
Instead, if we use the fourth peak in ascending order, we get
R2

(4) = 0.921, F -stat(4) = 369 and p-value(4) ≈ 0. The low
p-values indicate that both regressors are statistically signif-
icant, whereas the higher F-statistic and R2 relative to f(2,0)
imply that ordering the dataset by modes enhances the expres-
sivity and the accuracy of the model.

Replicating the same splitting into test and train sets on
the three labelled datasets, the average coefficients of deter-
mination are R2 = 0.993 for the G10, R2 = 0.990 for the
U50 and R2 = 0.983 for the U75. We can conclude that MLR
is a reliable estimation technique for the plate eigenfrequen-
cies regardless of the distribution characterizing the dataset.

The coefficients of the MLR can be used to obtain rela-
tions between the elastic constants EL, ER, GLR and the
eigenfrequencies f(0,2), f(2,0), f(1,1). We can approximate
the eigenfrequencies as linear combinations of the density and
one of the mechanical parameters that we want to infer. Thus,

we obtain a system of three equations and three unknowns
which can be easily inverted as

EL ≈ a1 + 106
(
b1ρ+ c1f(0,2)

)
ER ≈ a2 + 106

(
b2ρ+ c2f(2,0)

)
GLR ≈ a3 + 106

(
b3ρ+ c3f(1,1)

) , (2)

where ρ is the plate density, f(m,n) are the signature eigen-
frequencies and the elastic constants EL, ER, GLR are ex-
pressed in MPa. The weights of eq. (2) have the following
values and unit measures:

a =

−29000−2150
−1850

MPa, b =

35.62.71
2.35

 m2

s2
, c =

27412.9
29.3

 kg

m s
.

The relation above is obtained with the coefficients of the
MLR trained with the G10 dataset.

Notice that similar equations have been proposed by
Caldersmith in [22], i.e. eqs. (7) to (9). Caldersmith’s for-
mulas and the ones in eq. (2) are tested on the whole G10

dataset. We assess the quality of the two estimators by evalu-
ating the Mean Absolute Percentage Error (MAPE), which is
computed as

MAPE = 100
1

I

I∑
i=1

∣∣∣∣y − ŷy
∣∣∣∣ , (3)

where y is the target, ŷ is the prediction of the model and
I = 2500 is the number of observations. While for Calder-
smith’s formulas we have a MAPE of 0.88% on EL, 3.38%
on ER and 11.77% on GLR, with eq. (2) we obtain 0.35%
on EL, 1.99% on ER and 9.22% on GLR, thus achieving a
good improvement. Nevertheless, further investigations are
needed in order to establish whether this improvement holds
for plates of different geometry.

3.2. Amplitude

Since the input/output relation between material parameters
and amplitudes is strongly nonlinear, we need a more flexible
model, such as a feedforward neural network. In this paper
the Matlab® Machine Learning Toolbox (NNTRAINTOOL) is
used to implement, train and validate the network following
the Levemberg-Marquadt algorithm. The activation function
and the loss function employed are the logistic sigmoid func-
tion and the mean squared error, respectively. Each neural
network is trained for 1000 epochs with early stopping. A
detailed description of the toolbox can be found in [23, 24].

A diagram of a feedforward neural network is depicted in
the left part of Figure 3. The total number of layers L and the
number of neurons per hidden layer M define the topology
of the MFNN. We tune the hyperparameters of the neural net-
work carrying out a grid search varyingM and L and evalu-
ating each time the mean coefficient of determination defined
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Fig. 3. Left: diagram of a feedforward neural network. The one depicted in the figure has two inputs in the input layer x, two
outputs in the output layer ŷ andL hidden layersH of five neurons each. Center: hyperparameters tuning of the network trained
with the G10 dataset. Right: hyperparameters tuning of the network trained with the U75 dataset. The matrices show the mean
coefficient of determination R2 defined in eq. (1) associated to the estimation of the amplitude relative to the eigenfrequencies
f(1,1), f(0,2), f(2,1), f(2,0).

Fig. 4. Mean coefficient of determination R2, defined in
eq. (1), relative to the prediction of the amplitudes performed
by the feedforward neural network. The model is trained with
the three datasets and tested on four normally distributed test
sets Gσ with increasing standard deviation, that goes from
σ = 0.1 to σ = 0.4 with a step of 0.1.

in eq. (1) on a Gaussian test set with σ = 0.1 containing 250
tuples never seen by the models.

Figure 3 shows the results of the hyperparameters tuning
relative to the G10 and the U75. The low R2 values in the
right-bottom part of the matrices are caused by overfitting,
as the neural networks display a low and decreasing loss in
the training, whereas the loss relative to testing remains high
and constant (data not shown). One hidden layer and eight
neurons are enough to obtain R2 = 0.999 when training with
the G10. Given the accuracy of the network, there is no need
to further optimize the architecture. On the other side, since
the U75 is way broader, two layers and eight neurons yield the
best model, with an R2 = 0.985.

In order to evaluate how the networks estimate observa-
tions that fall outside the span of their training set, the neural
networks are tested with four Gσ test sets of 100 occurrences
each. The Gσ test sets are all normally distributed around the

nominal values shown in Table 1 with a standard deviation
that goes from σ = 0.1 to σ = 0.4, with a step of 0.1.

Figure 4 shows the mean coefficient of determination R2

for the testing process mentioned above. As the standard devi-
ation of the test set increases, the R2 associated to the MFNN
trained with the U75 overcomes the one relative to the net-
work trained with theG10. Nevertheless, the mean coefficient
of determination of G10 remains comparable to the one of the
U75, even if the distribution of the input parameters in theG10

is thinner than in U75 and U50. This suggests that the network
trained with the G10 has effectively learned to generalize the
relation between the material parameters and the magnitude
of the modes inside the FRF. On the other hand, the network
trained on the U50 presents the worst generalization ability as
its accuracy abruptly decreases whenever the span of the Gσ
test set overcomes the one of the U50.

4. CONCLUSIONS

This paper studies how to train two predictors to estimate
the point FRF evaluated at the eigenfrequencies of a wooden
plate. In particular, the eigenfrequencies and their amplitude
are estimated by a multilinear regressor and a feedforward
neural network, respectively.

To the best of our knowledge, this is the first time that the
dependance between the order of appearance of the eigenfre-
quencies and the material parameters is studied. In particular,
the variability of the material properties causes a switching
in the order of appearance of modes. In this direction, we
showed that using the mode numbers instead of the order of
appearance of modes to label the train set allows to greatly en-
hances the regression accuracy, regardless of the distribution
(normal or uniform, wide or thin) of the train set inputs.

Moreover, the MLR provides a linear relation between the
material parameters and the first eigenfrequencies of the plate
that is, for our plate, more accurate with respect to the ones
presented in the literature [22, 25, 26], which are still used to
estimate the elastic constants of wooden plates.
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