ON THE USE OF GEODESIC TRIANGLES BETWEEN GAUSSIAN DISTRIBUTIONS FOR CLASSIFICATION PROBLEMS
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Time series for remote sensing and classification

The Riemannian manifold of non-centered Gaussian distributions

Application

INn recent years, many image time series have been taken from the earth with different
technologies: SAR, multi/hyper spectral imaging, ...

Objectives: segment semantically these data using spatial information, temporal infor-
mation and sensor diversity (spectral bands, polarization...).
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Figure 1. Multivariate image time series.

Applications: disaster assessment, activity monitoring, land cover mapping, crop type
mapping, ...

Classification pipeline

Step 3: feature

Step 1: sliding window Step 2: feature estimation clustering /classification 2 classes: white and red
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Figure 2. Classification pipeline.
Fxamples of : 6 = X a covariance matrix, 6 = (u, 32) a vector and a covariance matrix, ...

Existing work and Riemannian geometry

xy, -, T, € RPrealizations of z ~ N(0,X), ¥ € S (set of p x p symmetric positive
definite matrices).
Step 2: maximum likelihood estimator:
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Step 3: Riemannian manifold of centered Gaussian distributions:
S, with the Fisher information metric: V€y, s in the tangent space at X

s, my)y =Tt (7' 'ny). (2)

= Riemannian distance
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= Riemannian center of mass of a set {3;}
Emean — alrg min Z d?g++(2, Zz) (4)
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For a full description of the manifold S and its associated center of mass: see [1, 2].

ICASSP 2022 - Sihgapore

R? x S with the Fisher information metric: V§ = (Sw Sz) 1 = (77“, 772) in the tangent
space
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(&, 77>(F;|L|\,/Iz) = 552 177“ + §TT (X% 'ny). (5)

Problem: this Riemannian geometry is not fully known... (see [3, 4])

(#’2! 22)

Figure 3. The geodesic between two non-centered Gaussian distributions is unknown in general.

Geodesic triangles for classification problems
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Figure 4. A geodesic triangle.

Divergence ¢: arc length of the path between (uy, 1) and (g, 2).
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Center of mass and Riemannian optimization

Riemannian center of mass (ftmean; 2mean) Of a set {(u;, 33;)}
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Algorithm to minimize a real-valued function f defined on R? x &

Input : Initial iterate (pq, X4).
Output: Sequence of iterates { (., 2) }.
k.= 1;
while no convergence do
Compute a step size a and set (g, 1, Xp1) = R, s (—agrad f(py, Xi));

k=Fk+1;
end
Algorithm 1: Riemannian gradient descent

= grad f (., 2p) Is the Riemannian gradient of f at (u,, 3;) computed in Proposition 1,
* R, s, Is a second order retraction at (py, Xy) derived in Proposition 2.

For a detailed introduction to optimization on Riemannian manifolds: see [5].

Breizhcrops dataset [6]:
= more than 600 000 crop time series across the whole Brittany taken by the Sentinel-2

satellite,

= 9 classes: barley, wheat, rapeseed, corn, sunflower, orchards, nuts, permanent
meadows and temporary meadows,

= 13 spectral bands.
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Figure 5. Reflectances of a Sentinel-2 time series from the Breizhcrops dataset.

Estimator Geometry Overall accuracy (%) Average accuracy (%)
X, RP> 10.1 18.5
Mean p, R? 13.2 14.8
Covariance matrix X, S 43.9 28.1
Centered covariance matrix ;| Sf+ 46.7 30.1
Proposed - (f;, %) Oc 54.3 37.0
Proposed - (f;, %) 01 53.3 35.7

Table 1. Accuracies of Nearest centroid classifiers on the Breizhcrops dataset.

We denote the columns of a time-series by X, = || X].1, -
estimators/geometries are considered:

= X ;: raw time-series with the Euclidean distance d( X, X,,) = || X — X || and the
arithmetic mean X mean = 17 2101 X j,

= fo; =+ 3" [X].;: temporal mean with the Euclidean distance
A1, ) = |y — fons 1, and the arithmetic mean fuea, = 4 S, ft,

=3 = Ly [ X)X 1Y temporal covariance matrix with the distance (3) and its
associated Riemannian mean (4),

, 1 X )0 € RPX™ Different

. T
=3, =157, ([X]-];,Z- — ﬂj) ([Xj];,i — ﬁj) . temporal centered covariance matrix with
the distance (3) and its associated Riemannian mean (4),

A

" (fr;, X;): temporal mean and centered covariance matrix with the divergence 4. and
its associated Riemannian center of mass (6),

A

" (fr;, X;): temporal mean and centered covariance matrix with the divergence 4, and
Its associated Riemannian center of mass (6).
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