

Knowledge Distilling for Object Detection in Remote Sensing Images

For Spaceborne or Airborne Online Remote Sensing **Object Detection (RSOD) Tasks:**

- Limited Computing Resources \rightarrow Lightweight CNN Models
- Lightweight CNN Models \rightarrow Performance Drop
- Performance Compensation \rightarrow Knowledge Distillation

Our Contributions:

 Propose a direction-adaptive knowledge extraction and distillation (DKED) method that compensates for the performance penalty of lightweight RSOD models;

• The proposed DKED distills arbitrary-oriented feature responses & correlations & predictions of objects in remote sensing images.

Extracting and Distilling Direction-Adaptive Knowledge for Lightweight Object Detection in Remote Sensing Images

Zhanchao Huang, Wei Li, Ran Tao **Beijing Institute of Technology**

Knowledge Distillation of DKED Dynamic Directional Convolution (DDC)

Because of the top-down perspective of remote sensing images, extracting arbitrary oriented features adaptively is important.

DDC dynamically generates convolutional filters that match the optimal orientation based on the input.

Direction-Adaptive Knowledge Extraction and Distillation (DKED) Framework

1) Teacher & Student Models for Distilling

Teacher Model: GGHL (Huang et al., TIP 2022)

2) Feature Correlation Distillation Distill the non-local correlation features extracted by the backbone CNNs.

Student Model: LO-Det (Huang et al., TGRS 2022)

Used in the auxiliary module of DKED framework without introducing additional inference costs

3) Feature Response Distillation

4) Prediction Distillation

The Representation of Predictions: GGHL (Huang et al., TIP 2022)

Experimental Results

Comparative Results w/wo Using DKED

mAP @HRSC r Methods 80.05 LO-Det

DKED + LO-Det **85.17**(+5.12) 87.30 GGHL DKED + GGHL 93.45(+6.15)

• DKED can also be used for self-distillation of large models to further improve detection performance.

E-mail: zhanchao.h@outlook.com

$L_{drfd} = \left\| \boldsymbol{G} \odot \left(\boldsymbol{Y}_{T}^{\prime} - \boldsymbol{Y}_{S}^{\prime} \right) \right\|_{2}^{2}$

Distill the direction -adaptive feature responses in the FPN of CNNs.

Distill the predictions of detection heads in CNN models.

 $L_{obb}\left(\pmb{r}_{T}, \pmb{r}_{S}, \pmb{r}_{GT}
ight)$ =

 $JOL_{obb}\left(\boldsymbol{r}_{S},\boldsymbol{r}_{GT}\right),$ if $JOL_{obb}\left(\boldsymbol{r}_{S},\boldsymbol{r}_{GT}\right) + \delta$ $> JOL_{obb} \left(\boldsymbol{r}_{T}, \boldsymbol{r}_{GT} \right)$ otherwise

 $L_{loc} = JOL_{obb} \left(\boldsymbol{r}_{S}, \boldsymbol{r}_{GT} \right) + \lambda \times L_{obb} \left(\boldsymbol{r}_{T}, \boldsymbol{r}_{S}, \boldsymbol{r}_{GT} \right)$ $L_{cls} = \lambda \times JOL_{cls} \left(\boldsymbol{c}_{S}, \boldsymbol{c}_{GT} \right) + (1 - \lambda) \times JOL_{cls} \left(\boldsymbol{c}_{T}, \boldsymbol{c}_{S} \right)$

Use the predictions of teacher model as soft labels.

nAP @DOTA	Speed (fps) @RTX3090	Speed (fps) @TX2	Speed (fps) @AGX Xavier
66.17	62.12	7.34	23.51
71.39 (+5.22)	62.16	7.38	23.51
76.95	42.39	4.67	14.72
77.43 (+0.48)	42.39	4.69	14.73

• DKED improves the detection performance of lightweight model without introducing any inference costs;

• Detection Results on HRSC & DOTA Datasets