

Pseudo-Level Transfer from Frame-Level to Note-Level in a Teacher-Student Framework for Singing Transcription from Polyphonic Music

Sangeun Kum¹, Jongpil Lee¹, Keunhyoung Luke Kim¹, Taehyoung Kim¹, Juhan Nam²

¹Neutune Research, Seoul, South Korea ² Graduate School of Culture Technology, KAIST, Daejeon, South Korea

Introduction

- STP includes several **sub-tasks**:
 - 1. Singing voice detection 3. Note-level segmentation

- 2. Singing pitch estimation
- 4. Onset/offset detection

Major obstacle to Singing Transcription from Polyphonic music (STP)

= Lack of large-scale **note-level** labeled data for **VOCALS**

>> Contribution

- 1. To obtain effective pseudo-labels, we use vocal pitch estimation model to predict frame-level label and **convert** it to note-level label.
- The proposed method (pseudo labeling, teacher-student framework, and JDC network) can 2. achieve comparable results to the previous work using only unlabeled data, even if there is no source separation algorithm.
- With additional labeled data, it achieves better performance than the model trained with only labeled data.

Method

Experiments

1. Comparison of Pitch Estimation Models

	Initial Pseu	ido Labels	\mathbf{JDC}_{note} (Teacher)		
Repurposed Models	Demucs + CREPE	JDC_{pitch}	Demucs + CREPE	JDC_{pitch}	
COnPOff	22.43	25.44	24.71	28.97	
COnP	45.01	48.48	48.64	53.32	
COn	57.65	61.94	62.32	64.74	

• JDC

- : Vocal melody extraction from **polyphonic** music
- Demucs
 - : music source separation
- **CREPE** [4]

: pitch estimation from **monophonic** music

JDC > Demucs + CREPE

: Separation algorithms cannot separate only the main **vocal melody** and polyphonic vocals are still remained \rightarrow Low performance

2. Basic Teacher-Student VS. Noisy Student

Labeled Dataset **Unlabeled dataset** Dataset Cmedia (100): test • In-house (2000): training MIR-ST500 (500) [1] • FMA (168,000): training : training

Making pseudo labels using vocal pitch estimation model from [Step 1] Unlabeled dataset

\sim Pitch Quantization Quantizatior

Pitch + Rhythm Quantization

- Rounds the continuous pitch to semi-tone
- Smoothing the quantized pitch with a series of three median filters
- Remove small fragments

[Step 2] Training Model

- The model architecture for STP is based on the joint detection and classification (**JDC**) model [2]
- Training teacher model for singing transcription (JDC_{pitch}) using pseudo label from *JDC*_{note}

Teacher-Student Framework [3] for singing transcription [Step 3]

- Noisy Student

	Cm	edia	MIR-ST500		
Models	TS NS		TS	NS	
COnPOff	28.97 29.62		22.12	22.62	
COnP	53.32	54.55	40.01	40.70	
COn	64.74	65.61	56.90	57.87	

3. Iteration of Self-Training

<u>Noisy Student > Basic TS</u>

: The student produce consistent outputs that minimize the difference from the teacher even though the input is perturbed

Iterative Training

: The performance continuously increases up to 2 iterations

4. Comparison with Supervised and Semi-Supervised Models

Decorintion						HZ [5]: <u>Rule-based</u> model VOCANO [6]: <u>Semi-supervised</u> mo EFN [1] : <u>Supervised</u> model		
Description JDC _{note} (U) Unsupervised model with unlabeled data $\mathcal{D}_{\mathcal{U}}$ JDC _{note} (L) Supervised model with labeled data $\mathcal{D}_{\mathcal{L}}$ JDC _{note} (L+U) Semi-supervised model with $\mathcal{D}_{\mathcal{L}}$ and $\mathcal{D}_{\mathcal{U}}$ Cmedia								
						<u>EFN > JDC(U)</u> > VOCANO > : This validates that the proposed method is the semi-supervised method in VOCA		
Model HZ	HZ	VOCANO	EFN	$\frac{\text{JDC}_{note}}{(11)}$			or the rule-based approach in HZ	
COnPOff	17.18	28.28	35.13	(U) 30.13	(L) 35.95	(L+U) 40.20		
COnP COn	41.43 63.63	48.33 64.56	60.77 76.40	55.84 65.72	62.50 73.88	66.11 75.97	JDC(L+U) > EFN > JDC(L)	

- models and unlabeled datasets.
- The method converts the frame-level pseudo labels to note-level and \bullet augments the label quality through **self-training** in the teacher-student framework.
- The <u>unsupervised</u> model trained through the proposed method can **achieve comparable results** to the previous works
- With **additional** labeled data, it **achieves better performance** than the model trained with only labeled data.
- [1] Wang, J., & Jang, J., "On the preparation and validation of a large-scale dataset of singing transcription," in Proc. ICASSP, 2021
- [2] Kum, S., & Nam, J., Joint detection and classification of singing voice melody using convolutional recurrent neural networks. Applied Sciences, 2019
- [3] Kum, S., Lin, J. H., Su, L., & Nam, J.. Semi-supervised learning using teacher-student models for vocal melody extraction. ISMIR, 2020
- [4] Kim, J. W., Salamon, J., Li, P., & Bello, J. P. Crepe: A convolutional representation for pitch estimation, ICASSP, 2018 [5] He, Z. & Feng, Y., "Singing transcription from polyphonic music using melody contour filtering," Applied Sciences, 2021 [6] Hsu, J. & Su, L., "VOCANO: A note transcription framework for singing voice in polyphonic music," in Proc. ISMIR, 2021