

Pseudo-Label Transfer from Frame-Level to Note-Level in a Teacher-Student Framework for Singing Transcription from Polyphonic Music

Sangeun Kum¹, Jongpil Lee¹, Keunhyoung Luke Kim¹, Taehyoung Kim¹, Juhan Nam²

¹ Neutune Research, Seoul, South Korea

² Graduate School of Culture Technology, KAIST, Daejeon, South Korea

: Definition

• The goal of Singing Transcription from Polyphonic Music (STP) is to transcribe the vocal part of polyphonic music into a series of note.

Steinway Grand Piano | Ch

< Q |

: Motivation

- **1. Singing voice detection**
- 2. Singing pitch estimation
- 3. Note-level segmentation
- 4. Onset/offset detection

: Motivation

- 1. Singing voice detection
- 2. Singing pitch estimation
- 3. Note-level segmentation
- 4. Onset/offset detection

: Motivation

STP includes several sub-task:

- 1. Singing voice detection
- 2. Singing pitch estimation
- 3. Note-level segmentation
- 4. Onset/offset detection

: Motivation

STP includes several sub-task:

- 1. Singing voice detection
- 2. Singing pitch estimation
- 3. Note-level segmentation
- 4. Onset/offset detection

: Motivation

- 1. Several sub-tasks
- 2. High **variability** of singing voice (timbre, expression, formant modulation)
- 3. Multiple instrument sources
- 4. Lack of large-scale note-level labeled data for VOCALS

STP is a **challenging** task !!

: Contribution

STP is a **challenging** task !!

Methods

- 1. Using pseudo labels from pre-trained pitch estimation model.
- Convert the **frame-level** pseudo label to **note-level** 2.
- Training **STP** model using **joint detection and classification model (JDC)** 3.
- Self-training in an teacher-student framework 4.

: Contribution

STP is a **challenging** task !!

Methods

- 1. Using pseudo labels from pre-trained pitch estimation model.
- Convert the **frame-level** pseudo label to **note-level** 2.
- Training STP model using joint detection and classification model (JDC) 3.
- Self-training in an teacher-student framework 4.

: Contribution

STP is a **challenging** task !!

Fig. 2. The model architecture for JDC_{note} . "C" indicates feature concatenation.

Methods

- 1. Using pseudo labels from pre-trained pitch estimation model.
- Convert the frame-level pseudo label to note-level 2.
- Training **STP** model using **joint detection and classification model (JDC)** 3.
- Self-training in an teacher-student framework 4.

: Contribution

HZ	VOCANO	EFN	JDC _{note}		
112			(U)	(L)	(L+U)
17.18	28.28	35.13	30.13	35.95	40.20
41.43	48.33	60.77	55.84	62.50	66.11
63.63	64.56	76.40	65.72	73.88	75.97
	41.43	17.18 28.28 41.43 48.33	17.18 28.28 35.13 41.43 48.33 60.77	HZ VOCANO EFN (U) 17.18 28.28 35.13 30.13 41.43 48.33 60.77 55.84	HZ VOCANO EFN (U) (L) 17.18 28.28 35.13 30.13 35.95 41.43 48.33 60.77 55.84 62.50

Using vocal pitch estimation model to predict frame-level pitch and **convert** it to note-level pseudo label.

2. Model (Using only unlabeled data)
: Comparable results to the previous work (no use <u>source separation</u>)

Model (with **additional labeled** data) : Better performance than the model trained with only labeled data.

1.

2.

: Contribution

Cmedia							
Model	HZ	VOCANO	EFN	JDC _{note}			
	112	(o chi to		(U)	(L)	(L+U)	
COnPOff	17.18	28.28	35.13	30.13	35.95	40.20	
COnP	41.43	48.33	60.77	55.84	62.50	66.11	
COn	63.63	64.56	76.40	65.72	73.88	75.97	

Using vocal pitch estimation model to predict frame-level pitch and convert it to note-level pseudo label.

Model (Using **only unlabeled** data) : Comparable results to the previous work (**no** use <u>source separation</u>)

3. Model (with additional labeled data): Better performance than the model trained with only labeled data.

[Step 1] Making pseudo labels

: Using vocal pitch estimation model from Unlabeled dataset

[Step 1] Making pseudo labels

: Using pre-trained vocal pitch estimation model

[Step 2] Training note transcription model

: Training STP model using pseudo label

First build a **new neural network model** for STP and train it using the note-level pseudo labels obtained from the first stage.

Fig. 2. The model architecture for JDC_{note} . "C" indicates feature concatenation.

[Step 3] Self-training in the Teacher-Student framework

: Noisy Student

Train the **student model** using **pseudo labeled** data from teacher model (& labeled data)

[Step 3] Self-training in the Teacher-Student framework

: Noisy Student

We train STP model using the **Noisy Student model** [2] to encourage the model to produce **consistent** output.

[2] Kum, S., Lin, J. H., Su, L., & Nam, J.. Semi-supervised learning using teacher-student models for vocal melody extraction. ISMIR, 2020

Minimize difference

[Step 3] Self-training in the Teacher-Student framework

: Iterative Training

I Experiment 1: Comparison of Pitch Estimation Models

: Pitch estimation methods for obtain pseudo label

	Initial Pseu	ido Labels	JDCnote (Teacher		
Repurposed Models	Demucs + CREPE	JDC_{pitch}	Demucs + CREPE	JDC_{pitch}	
COnPOff	22.43	25.44	24.71	28.97	
COnP	45.01	48.48	48.64	53.32	
COn	57.65	61.94	62.32	64.74	

JDC_{pitch} > **source separation** (Demucs) + **CREPE**

: Separation algorithms cannot separate only the main vocal melody

: Polyphonic vocals are still remained \rightarrow CREPE = Low performance

I Experiment 1: Comparison of Pitch Estimation Models

: Pitch estimation methods for obtain pseudo label

	Initial Pseu	udo Labels	\mathbf{JDC}_{note} (Teache		
Repurposed Models	Demucs + CREPE	JDC_{pitch}	Demucs + CREPE	JDC_{pitch}	
COnPOff	22.43	25.44	24.71	28.97	
COnP	45.01	48.48	48.64	53.32	
COn	57.65	61.94	62.32	64.74	

 $JDC_{note}(Teacher) >$ Initial Pseudo Labels

: Confirm the efficacy of the **repurposed** neural network models

: Confirm the efficacy of the JDC network for STP

I Experiment 2: Teacher-Student Framework

: Basic Teacher-Student VS. Noisy Student

	Cmedia		MIR-	ST500
Models	TS	NS	TS	NS
COnPOff	28.97	29.62	22.12	22.62
COnP	53.32	54.55	40.01	40.70
COn	64.74	65.61	56.90	57.87
				\checkmark_+

Noisy Student > Basic TS

: The student produce **consistent** outputs that **minimize the difference** from the teacher even though the **input is perturbed**

Experiment 3: Teacher-Student Framework

: Iterative Training

Iterative Training

: The performance continuously **increases** up to 2 iterations

I Comparison with Supervised and Semi-Supervised Models

: Unsupervised, Supervised, and Semi-supervised

- HZ [4]: Rule-based model
- VOCANO [5]: Semi-supervised model
- EFN [6]: Supervised model

	Source Separation Required	Method	
HZ [4]	X	Rule-based	
VOCANO [5]	Ο	Semi-supervised	+
EFN [6]	Ο	Supervised	
Proposed	X	Teacher-student framework	÷

[4] He, Z. & Feng, Y., "Singing transcription from polyphonic music using melody contour filtering," Applied Sciences, 2021
[5] Wang, J., & Jang, J., "On the preparation and validation of a large-scale dataset of singing transcription," in Proc. ICASSP, 2021
[6] Hsu, J. & Su, L., "VOCANO: A note transcription framework for singing voice in polyphonic music," in Proc. ISMIR, 2021

VOCANO

EFN

-Labeled Unlabeled Labeled

Data

Unlabeled

I Comparison with Supervised and Semi-Supervised Models

: Unsupervised, Supervised, and Semi-supervised

Description					
$JDC_{note}(U)$	Unsupervised model with unlabeled data $\mathcal{D}_{\mathcal{U}}$				
$JDC_{note}(L)$	Supervised model with labeled data $\mathcal{D}_{\mathcal{L}}$				
$JDC_{note}(L+U)$	Semi-supervised model with $\mathcal{D}_{\mathcal{L}}$ and $\mathcal{D}_{\mathcal{U}}$				

		Cm	edia			
Model	HZ VO	VOCANO	EFN	\mathbf{JDC}_{note}		
				(U)	(L)	(L+U)
COnPOff	17.18	28.28	35.13	30.13	35.95	40.20
COnP	41.43	48.33	60.77	55.84	62.50	66.11
COn	63.63	64.56	76.40	65.72	73.88	75.97
ibininakia Biasanin		MIR-	ST500	a de la companya de La companya de la comp		
Model	HZ	VOCANO	EFN		JDC_{note}	
				(U)	(L)	(L+U)
COnPOff	-	-	45.78	23.48	40.57	42.23
COnP	-	-	66.63	42.10	67.55	69.74
COn			75.44	58.61	74.94	76.18

- HZ [4]: Rule-based model
- VOCANO [5]: Semi-supervised model
- EFN [6]: Supervised model

$EFN > JDC_{note}(U) > VOCANO > HZ$

: This validates that the proposed method is superior to the semi-supervised method in VOCANO or the rule-based approach in HZ.

I Comparison with Supervised and Semi-Supervised Models

: Unsupervised, Supervised, and Semi-supervised

Description						
$JDC_{note}(U)$	Unsupervised model with unlabeled data $\mathcal{D}_{\mathcal{U}}$					
$JDC_{note}(L)$	Supervised model with labeled data $\mathcal{D}_{\mathcal{L}}$					
$JDC_{note}(L+U)$	Semi-supervised model with $\mathcal{D}_{\mathcal{L}}$ and $\mathcal{D}_{\mathcal{U}}$					

		Cm	edia			
Model	HZ VOCANO	VOCANO	EFN	JDC_{note}		
model				(U)	(L)	(L+U)
COnPOff	17.18	28.28	35.13	30.13	35.95	40.20
COnP	41.43	48.33	60.77	55.84	62.50	66.11
COn	63.63	64.56	76.40	65.72	73.88	75.97
		MIR-	ST500		er af an	-Reconstruction
Model	HZ	VOCANO	EFN			
				(U)	(L)	(L+U)
COnPOff	-	-	45.78	23.48	40.57	42.23
COnP	-	-	66.63	42.10	67.55	69.74
COn	-	-	75.44	58.61	74.94	76.18

- HZ [4]: Rule-based model
- VOCANO [5]: Semi-supervised model
- EFN [6]: Supervised model

$JDC_{note}(L + U) > EFN > JDC_{note}(L) > VOCANO > HZ$

1. Given that $JDC_{note}(L)$ was also trained with the same training set that was used in EFN, the two models seem to be comparable to each other.

2. $JDC_{note}(L + U)$ pushes the accuracy levels higher, achieving best performances.

: Conclusion

Fig. 2. The model architecture for JDC_{note} . "C" indicates feature concatenation.

I Demo

Pseudo-Level Transfer from Frame-Level to Note-Level in a Teacher-Student Framework for Singing Transcription from Polyphonic Music

Sangeun Kum¹, Jongpil Lee¹, Keunhyoung Luke Kim¹, Taehyoung Kim¹, Juhan Nam²

¹ Neutune Research, Seoul, South Korea

² Graduate School of Culture Technology, KAIST, Daejeon, South Korea

