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Introduction

What is Popularity?

l Micro-blogging
l Music
l Pictures
l News
l E-commerce
l Micro-videos
l ……

perfume
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Ø Retweets
Ø Likes
Ø Views
Ø Comments
Ø Sales
Ø Downloads
Ø ……

Online media Number of times



Introduction

Existing Works

n Before posting the micro-video

Ø Content-agnostic factors (Jia et al., WWW'17）

Ø Content-based fusion (Jing et al., TKDE'18）

n After posting the micro-video

Ø Popularity sequence (Vallet et al., CIKM'15）

Ø Multimodal variational encoder-decoder (Xie et al., WWW'20)

𝑡! 𝑡"
Time Line

Post the micro-video
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Introduction

Motivation

n Complex characteristics in shopping micro-videos
Ø Rich information including anchor's voice emotion, product description, facial 

expression and social relationship.
Ø Popularity trends that is affected by dramatic fluctuations in unexpected events.

n Develop a unified framework
Ø Different viewers pay attention to different modality.
Ø Applicable to various fields such as news, music, photo scenes.
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Methodology

n Uploader

n Micro-video

n Hashtag

n Time

n Location
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Features Analysis

n Most of the numerical features are 
approximately a logarithmic distribution. 

n The hashtag itself has a certain popularity.
n The spatiotemporal information of the 

posted videos is crucial to the popularity.
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Methodology

MTAF Framework

n Encoding Layer

Ø Multi-modal Content Representations

Ø Temporal Trend Representations

Ø Content-agnostic Representations

n Attention Fusion Layer

n Prediction Layer
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Methodology

n Encoding Layer

Ø BERT to extract a deep semantic representation. (Devlin et al., arXiv'18)

Ø VGGish to obtain a deep signal information. (Hershey et al., ICASSP'17)

Ø ResNet152 to capture a deep visual features. (He et al., CVPR'16)

Ø Bi-GRU to learn  “rich-get-richer” phenomenon and dramatic fluctuations. 

n Attention Fusion

n Popularity Prediction
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Experiments

n Dataset
7599 active users, 20445 shopping micro-videos, 122670 records

n Research Questions
Ø Q1：What is the performance of proposed MTAF model? 
Ø Q2：Do multimodal content features have a significant impact? 
Ø Q3：How effective are early popularity trend in predicting task?

n Baselines
SVR,  LR, RFR(MM'18), XGBR(MM'19), Bi-GRU

n Evaluation Metrics
MAE, MSE, Coefficient of Determination (R0), 
Spearman Rank Correlation Coefficient (SRCC), 
Normalized Discounted Cumulative Gain (NDCG)   
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Experiments

Ø The proposed model outperforms the advanced machine learning-based models. 

Ø The attention-based approach is better than the methods that not use it.
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Experiments

Ø When content-agnostic features are missing, the performances of the model are 
worse dramatically.

Ø While textual, acoustic and visual modalities are in decreasing order of influence. 
Visual features are more significant compared to other modalities.
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Experiments

Ø Performances are substantially improved when combined with temporal features, 
which may be related to the fact that the popularity sequence is monotonically growing. 

Ø Compared with only employ time-series models, a combination of multimodal and 
sequence representations can be effectively enhanced. 
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Conclusions

n Main contributions

Ø A unified framework to efficiently represent and fuse multimodal content.

Ø We explore the important factors that influence the popularity of shopping micro-videos.

Ø The model is easy to extend and deploy.

n Future works

Ø Consider knowledge graph to enrich representations.

Ø Cross-modal perception 
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