

MTAF: SHOPPING GUIDE MICRO-VIDEOS POPULARITY PREDICTION USING MULTIMODAL AND TEMPORAL ATTENTION FUSION APPROACH

Ningrui Ou, Li Yu*, Huiyuan Li, Qihan Du, Junyao Xiang, Wei Gong School of Information, Renmin University of China

Outline

- Introduction
- Methodology
- Experiments
- Conclusion

Introduction

What is Popularity?

Online media

Number of times

- Micro-blogging
- Music
- Pictures
- News
- E-commerce
- Micro-videos
-

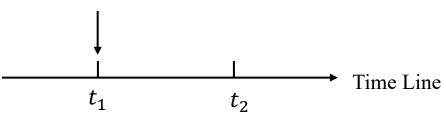
- > Retweets
- > Likes
- > Views
 - **Comments**
 - Sales
 - Downloads
 - **>**

Figure 1. Shopping guide micro-video comes with a product link (left) and KOL's individual store link to Taobao (right)

Introduction

Existing Works

Post the micro-video



- Before posting the micro-video
 - Content-agnostic factors (Jia et al., WWW'17)
 - ➤ Content-based fusion (Jing et al., TKDE'18)
- After posting the micro-video
 - ➤ Popularity sequence (Vallet et al., CIKM'15)
 - ➤ Multimodal variational encoder-decoder (Xie et al., WWW'20)

Introduction

Motivation

- Complex characteristics in shopping micro-videos
 - ➤ Rich information including anchor's voice emotion, product description, facial expression and social relationship.
 - > Popularity trends that is affected by dramatic fluctuations in unexpected events.
- Develop a unified framework
 - ➤ Different viewers pay attention to different modality.
 - > Applicable to various fields such as news, music, photo scenes.

Features Analysis

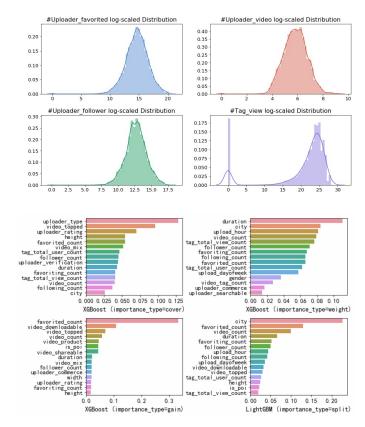
- Uploader
- Micro-video
- Hashtag
- Time
- Location

Table 1.The content-agnostic features in TikTok dataset.

Variable	Description			
Uploader verification	Is the uploader authenticated by the platform			
Uploader type	Type of the uploader, such anchor, star, etc.			
Uploader rating	Rating of the uploader			
Uploader commerce	Commerce level of the uploader			
Uploader video count	Number of videos published by the uploader			
Uploader follower	Number of followers of the uploader			
Uploader following	Number of the uploader follows others			
Uploader favorited	Number of likes for uploader's all videos			
Uploader favoriting	Number of the uploader favorite other video			
Uploader searchable	Is the uploader searchable to others			
Uploader visible	Is the uploader visible to others nearby			
Uploader gender	Gender of the uploader			
Uploader age	Age of the uploader			
Video duration	Length of the video, in seconds			
Video favorite count	Number of times the video was 'favorited'			
Video comment count	Number of times the video was commented			
Video share count	Number of times the video was shared			
Video quality	Width and height of the video			
Video topped	Is the video topped in the video list			
Video downloadble	Is the video allowed to be downloaded			
Video shareable	Is the video allowed to be shared			
Video commentable	Is the video allowed to be commented			
Video mix	Is the video a part of a collection			
Video product	Is there a product link attached to the video			
Video tag count	Number of the tags assigned to the video			
Tag total view count	Number of times the tag was viewed			
Tag total user count	Number of uploaders who used the tag			
Upload dayofweek	What day of the week the video was uploaded			
Upload hour	What hour of the day the video was uploaded			
Upload city	City where video was uploaded			
Upload POI	Is a point of interest in the location uploaded			

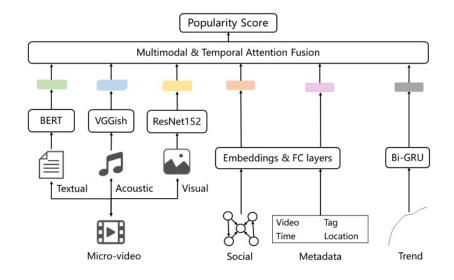
Features Analysis

- Most of the numerical features are approximately a logarithmic distribution.
- The hashtag itself has a certain popularity.
- The spatiotemporal information of the posted videos is crucial to the popularity.



MTAF Framework

- Encoding Layer
 - Multi-modal Content Representations
 - > Temporal Trend Representations
 - > Content-agnostic Representations
- Attention Fusion Layer
- Prediction Layer

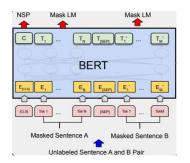


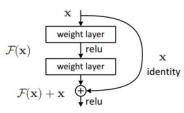
■ Encoding Layer

- ➤ BERT to extract a deep semantic representation. (Devlin et al., arXiv'18)
- ➤ VGGish to obtain a deep signal information. (Hershey et al., ICASSP'17)
- ResNet152 to capture a deep visual features. (He et al., CVPR'16)
- ➤ Bi-GRU to learn "rich-get-richer" phenomenon and dramatic fluctuations.
- Attention Fusion
- Popularity Prediction

$$\hat{y} = \sum_{j=1}^{N} P(x)_j * X \qquad \sum_{i=1}^{N} P(x)_j = 1$$

$$L(y, \hat{y}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$





Dataset

7599 active users, 20445 shopping micro-videos, 122670 records

- Research Questions
 - ➤ Q1: What is the performance of proposed MTAF model?
 - ➤ Q2: Do multimodal content features have a significant impact?
 - ➤ Q3: How effective are early popularity trend in predicting task?
- Baselines

SVR, LR, RFR(MM'18), XGBR(MM'19), Bi-GRU

■ Evaluation Metrics

MAE, MSE, Coefficient of Determination (R²), Spearman Rank Correlation Coefficient (SRCC), Normalized Discounted Cumulative Gain (NDCG)

$$R^{2} = 1 - \frac{\sum_{i=1}^{N} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{N} (y_{i} - \bar{y})^{2}}$$

$$SRCC(R_{1}, R_{2}) = 1 - \frac{6 \times \sum_{i=1}^{N} (R_{1,i} - R_{2,i})^{2}}{N \times (N^{2} - 1)}$$

$$DCG@K = \sum_{i=1}^{k} \frac{r_{i}}{\log_{2}(i+1)} \quad NDCG@K = \frac{DCG@K}{iDCG@K}$$

Table 2. Comparison of performance between our model MTAF and the several baseline methods.

Methods	MAE	MSE	R ²	SRCC	NDCG@10
SVR	1.518	3.631	0.130	0.363	0.106
LR	1.032	1.735	0.584	0.789	0.241
RFR	0.894	1.303	0.688	0.837	0.218
XGBR	0.877	1.275	0.695	0.841	0.134
MTAF-Att	0.864	1.249	0.701	0.849	0.390
MTAF	0.822	1.139	0.727	0.860	0.380

- > The proposed model outperforms the advanced machine learning-based models.
- > The attention-based approach is better than the methods that not use it.

Table 3. Evaluation of robustness when some modality is missing in features fusion stage.

Methods	MAE	MSE	\mathbb{R}^2	SRCC	NDCG@10
MTAF-N	1.363	2.978	0.286	0.538	0.078
MTAF-T	0.881	1.288	0.691	0.846	0.339
MTAF-A	0.870	1.259	0.698	0.849	0.380
MTAF-V	0.864	1.243	0.702	0.850	0.364
MTAF	0.822	1.139	0.727	0.860	0.380

- ➤ When content-agnostic features are missing, the performances of the model are worse dramatically.
- ➤ While textual, acoustic and visual modalities are in decreasing order of influence. Visual features are more significant compared to other modalities.

Table 4. Evaluation of early popularity trend.

Methods	MAE	MSE	\mathbb{R}^2	SRCC	NDCG@10
Bi-GRU	0.455	0.368	0.916	0.986	0.988
Bi-LSTM	0.439	0.389	0.911	0.986	0.988
MTAF	0.083	0.019	0.995	0.991	0.992

- ➤ Performances are substantially improved when combined with temporal features, which may be related to the fact that the popularity sequence is monotonically growing.
- ➤ Compared with only employ time-series models, a combination of multimodal and sequence representations can be effectively enhanced.

Conclusions

Main contributions

- ➤ A unified framework to efficiently represent and fuse multimodal content.
- We explore the important factors that influence the popularity of shopping micro-videos.
- ➤ The model is easy to extend and deploy.

■ Future works

- ➤ Consider knowledge graph to enrich representations.
- Cross-modal perception

Main References

Jia, Adele Lu, et al., "An analysis on a YouTube-like UGC site with enhanced social features," in International Conference on World Wide Web Companion, pp. 1477-1483, 2017.

P. Jing, Y. Su, et al., "Low-Rank Multi-View Embedding Learning for Micro-Video Popularity Prediction," in IEEE Transactions on Knowledge and Data Engineering, pp. 1519-1532, 2018.

D. Vallet, S. Berkovsky, et al., "Characterizing and Predicting Viral-and-Popular Video Content," in International Conference on Information and Knowledge Management, pp. 1591-1600, 2015.

J. Xie et al., "A Multimodal Variational Encoder-Decoder Framework for Micro-video Popularity Prediction," in International Conference on World Wide Web, pp. 2542-2548, 2020.

K. Xu, et al., "Multimodal Deep Learning for Social Media Popularity Prediction with Attention Mechanism," in ACM International Conference on Multimedia, pp. 4580-4584, 2020.

Thanks

13 May, 2022