Deep Hashing with Hash Center Update for Efficient Image Retrieval

Abin Jose, Daniel Filbert, Christian Rohlfing, Jens-Rainer Ohm Institut für Nachrichtentechnik, RWTH Aachen University, Paper number : 4514

Abstract

- An approach for learning binary hash codes for image retrieval.
- Canonical Correlation Analysis (CCA) is used to design two loss functions for training the neural network.
- The correlation between the two views to CCA is maximized by the network.
 The main motivation of using CCA Dimensionality reduction.

Network Architecture

- First loss maximizes the correlation between the hash centers and hash codes.
- Second loss maximizes the correlation between class labels and classification scores.
- A novel weighted mean and thresholding-based hash center update scheme for adapting hash centers is proposed.
- Training loss reaches the theoretcial lower bound of the proposed loss function.
- The measured mean average precision outperforms other state-of-the-art methods.

Experimental Setup

- Two multi-labeled datasets, were used for evaluation of the performance - NUS-WIDE and MS-COCO.
- Training and test curves were plotted for each dataset.

Proposed Deep Central Similarity Hashing network architecture. ResNet layers are used as the backbone network. Hashing and classification layer consist of a fully connected layer with subsequent sigmoid activation. Intermediate layer consists of fully connected layer with ReLU activation.

Algorithm

Algorithm	DCSH hash center update
Require: Ha	with centers $\mathcal{H}^{(i)} = \{\vec{h}_c^{(i)}\}, c = 1,, C$ with
C classe	s, and output hashes $\{\vec{x_h}^{(i)}\} \in [0;1]^n$ with
n = 1,	, N from N training images at epoch i .
1: For each	class c, group all hash outputs associated with
c in their	label $l_{\rm n}$:
$\mathcal{G}_c^{(i)} = \{$	$\vec{x_h}^{(i)}: c \text{ in } l_n$, for $c = 1,, C$.
2: Calculate	e weights for each output hash based on num-
ber of cla	asses in its label $ l_n $:
$w_{\mathrm{n}} = \frac{1}{ l_{\mathrm{n}} }$	Ţ•

- Retrieval performance was measured by calculating the mean average precision (MAP).
- The neural network architecture used is ResNet-50.
- Batch size used was 200, learning rate 0.0008 and learning rate decay 0.1 every 10th epoch.
- Optimizer used was Stochastic Gradient Descent (SGD).

Proposed DCSH hash center update algorithm.

Results - MSCOCO

(a) MS-COCO bird class in orange

(c) MS-COCO loss curve

Results - NUSWIDE

(b) NUS-WIDE dog class in orange

(d) NUS-WIDE loss curve

MAP values

• MAP value is highest for our approach.

• As the bit length increases MAP values increase as well.

MS-COCO					NUS-WIDE				
Method	16 bits	32 bits	48 bits	64 bits	Method	12 bits	24 bits	32 bits	48 bits
DCSH (ours)	0.805	0.847	0.859	0.861	DCSH (Ours)	0.823	0.833	0.841	0.857
CSQ 21	0.796	0.838	-	0.861	DPSH 15	0.794	0.822	0.838	0.851
DCCH 19	0.659	0.729	0.731	0.739	DCCH 19	0.782	0.814	0.825	0.834
HashNet 3	0.687	0.718	0.730	0.736	CSQ 21	-	-	0.825	-
DHN 28	0.677	0.701	0.695	0.694	DSDH 26	0.776	0.808	0.820	0.829
DNNH 29	0.593	0.603	0.604	0.610	DDSH 17	0.791	0.815	0.821	0.827
CNNH 30	0.564	0.574	0.571	0.567	DTSH 27	0.773	0.808	0.812	0.814

Conclusions

• An efficient approach for learning hash codes for image retrieval is proposed.

- The correlation between hash codes and hash centers is maximized.
- Experiments substantiate formation of an optimized feature space with minimum intra-class scatter and maximum inter-class scatter.
- This is infact possible due to the equivalence of CCA with Linear Discriminant Analysis (LDA).
- As a future work more effective representations of individual classes could be explored.

jose@ient.rwth-aachen.de

www.ient.rwth-aachen.de

ICASSP 2022

Institut für Nachrichtentechnik, Melatener Str. 23, 52074 Aachen