Tackling Data Scarcity in Speech Translation Using Zero-Shot Multilingual Machine Translation Techniques

Authors: Tu Anh Dinh, Danni Liu, Jan Niehues

Department of Data Science and Knowledge Engineering Maastricht University, The Netherlands

IEEE ICASSP 2022

Overview

- Introduction
- Methods
- Experiments + Results
- Analysis
- Conclusions

Motivation

Speech Translation (ST):

Translating speech in one language into text in another language

Motivation

- Cascaded Speech Translation
 - Use 2 systems:
 - Automatic Speech Recognition (ASR)
 - Machine Translation (MT)

• Problem: error propagation

Motivation

- Tackling error propagation:
- End-to-end Speech Translation
 - Use 1 system

- Problem: lack of end-to-end ST data
- \rightarrow Q: How do we tackle this ST-data-scarcity issue?

Proposed approach

A: By leveraging ASR and MT data for training!

Contribution:

- End-to-end, multi-task model:
 - $_{\circ}$ $\,$ $\,$ Trained on two tasks: ASR and MT $\,$
 - o Fine-tuned with ST task
 → Few-shot models
 - Perform ST task during inference

Requirement: <u>Similar semantic representation across modalities</u> (EN audio and EN text)

- Proposed methods:
 - Encouraging semantic similarity: auxiliary loss
 - $_{\circ}$ $\,$ Better control output language: data augmentation $\,$

Base multi-task model

- Training data: ASR + MT
- Model architecture: Transformer
- 2 parallel encoders:
 - Text encoder + Audio encoder \circ
 - Share parameters 0
 - \rightarrow Encourage similar semantic representation across modalities

Base multi-task model

• Controlling output language:

Add target-language tokens to:

- the beginning of input sequences
- every decoder input embedding

Cross-modality knowledge sharing: Auxiliary loss function

Auxiliary loss function

- Minimize text-audio encoder output difference between semantically similar sentences
 - \rightarrow Modality-independent representation
- Metrics for difference: squared error of mean-pool over time:

 $[mean_pool(Encoder(X)) - mean_pool(Encoder(Y))]^2$

where X, Y are a pair of sentences with the same content, one in text and one in audio

Better controlling output language: Data augmentation

• Problem:

During training: Audio input \rightarrow EN output

Text input \rightarrow DE output

 \rightarrow Model decides on output language based on input modality, instead of the specified *target-language token*

- Solution: data augmentation
 - o Aim: having more than 1 target language output for each modality
 → Force the model to rely on *target-language token*
 - Artificial language: character-wise-reversed English (EN-R)

E.g. "Hello world!" \rightarrow "Dirow olleh!"

Require no additional real dataset

Experiment setups

• Data: CoVoST 2

- A large-scale multilingual ST corpus
- o Focus of the paper: EN audio → DE text Data statistics:

	Training set	Validation set	Test set
Number of samples	289K	15K	15K

- Models use all ASR and MT data for training; use 10% or 25% of ST data for fine-tuning → Few-shot models
- Reporting BLEU score on ST task (the higher the better)

Experiments + Results

Baseline models

	10% ST data	25% ST data
	for training/fine-tuning	for training/fine-tuning
Direct end-to-end ST	0.5	0.8
Pre-trained with ASR	8.4	10.9
(Proposed model) Pre-trained with multi-task ASR and MT	9.8	12.4

- Direct end-to-end ST model not being able to perform ST task
- Model pretrained with ASR can perform ST task
- Proposed model gives the best performance
 → Strongest baseline

Experiments + Results

Proposed models

	10% ST data for fine-tuning	25% ST data for fine-tuning
Plain proposed model	9.8	12.4
Plain proposed model + auxiliary loss	10.6 (+0.8)	13.2 (+0.8)
Plain proposed model + augmented data	11.5 (+1.7)	13.5 (+1.1)
Plain proposed model + augmented data + auxiliary loss	11.5 (+1.7)	13.7 (+1.3)

- Auxiliary loss and data augmentation improves performance
- Most performance gain when used in combination
- More performance gain with less amount of ST data
 → Approaches particularly effective in low-resource scenarios.

Experiments + Results

Proposed models: comparison to full-data scenario

- Direct end-to-end model using <u>100% of ST data</u> gives: 14.9 BLEU points
- Best proposed model using <u>25% of ST data</u> gives: 13.7 BLEU points

 \rightarrow Proposed model use significantly less ST data, yet only fail short by 1.2 BLEU points

Analysis

Cross-modal similarity at sentence level and translation quality

- Singular Vector Canonical Correlation Analysis (SVCCA)
- EN audio EN text meanpooled encoder output
- Higher SVCCA score
 ↔ More text-audio semantic similarity in sentence level

Observations:

- Proposed approaches increase text-audio similarity
- More text-audio similarity
 ↔ better ST performance

Analysis

Cross-modal similarity at token level

- Classify encoder output tokens (text/audio)
- Better classification performance \rightarrow lower text-audio similarity
- Outcome:
 - Models without auxiliary loss:
 Over 99.9% classification accuracy → two modalities very distinguishable
 - Models with auxiliary loss:
 Most tokens classified as "audio" → unable to distinguish two modalities
- → Auxiliary loss indeed improves **text-audio similarity** in **token level**

Conclusions

- Key requirement for leveraging ASR and MT data for ST task: Similar semantic representation across modalities
- ST performance improved:
 - Up to **+12.9** BLEU points vs. direct end-to-end ST models
 - Up to **+3.1** BLEU points vs. ST models fine-tuned from ASR models
- Proposed models successfully make use of ASR and MT training data for ST task

Thank you for your attention!

