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\Q Restaurant booking scenario

| had 10 restaurants. 2g Japanese
Brasserie is great for you.

Offer name: 2g Japanese Brasserie

Inform count count: 10

User

Yes, 2g Japanese works. | want to reserve there.

Inform Intent

reserve_restaurant: True

Select name: 2g Japanese

=== | Predict intents and slots for a given utterance.
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Problems

Previous works rely only on single utterances for spoken language understanding.

— In multi-domain dialogs, it requires back-and-forth interactions to reduce ambiguity.

Dialog Contexts ‘ Commonsense
¢ , Knowledge

|

Previous work Previous work
1. Model Joint distribution on intents and slots (Liu et al ‘17). 1. Response generation
-> No contexts. (Zhao et al ‘20, Zheng et al ‘21).
2. Use the previous turn to compare. -> SLU is important as well.
-> |nsufficient to model history. 2. Knowledge attention (Wang et al “19).
3. Memory network (Chen et al “16). -> Single LSTM to encode all knowledge
CASA-NLU (Gupta et al ‘19). and contexts.

-> No temporal information.
4. Sequential Dialogue Network (Bapna et al “17).
-> Contexts are condensed.
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Commonsense Knowledge Intent/Slots
‘ D ‘ . , (maybe; related to;
€. Is there something that's maypea — - —_— Request
T uncertainty)
'ﬁ' good intelligent comedy?
f —  (comedyisa ——
drama)
Commonsense Knowledge Intent/Slots
: Inform
Whiskey Tango Foxtrot is the only _— (Foxtrot; related -

Adult comedy | see playing in your
area. Would you like to try that

to; dance .

T (a,dult; calable of; §

work)

(area; is a; region)
4
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Context Attention Knowledge Fusion
« Masked transformer decoder  Knowledge Attention with contexts.
» Remain chronological order. » Extract knowledge triples with word matching.
» Maintain contextual information. »> Context-based filtering.
» Store previous calculation. » Knowledge-enriched vectors.
M
Gated Knowledge oF = aiglrigs tag]
j=1
« Non-alphabetic words have no ad
knowledge. iy = exp(Bis)/ Y exp(Bim)
« (Gating mechanism to remove noises. m=1

Bij = (hf’WH)(tanh(anR an t@'jWT))T

n/ n n
hi = Gi- hz + (1 o gz) "V, Tij tij: entityvectors. M: Number of
g =eWalh su] 16 W:learnable matrices.  knowledge.
[; ]: concatenation.
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Experiments ©) ISR
Multi-turn Dialogue Datasets Baselines
1. MDC: 1. MID-SF:
Microsoft dialogue challenge dataset Multi-intent detection with BiLSTMs.
2. SGD: 2. ECA:
Schema-Guided Dialogue dataset LSTM encoder to encoder dialog contexts.
3. KASLUM:

Extract knowledge for joint tasks.

train/val/test | Total 4. CASA:
(total) Labels Encode contexts with DiISAN setnence2token

and BERT.
45k/15k/15k 11 5. KABEMj,p:

SGD 198k/66k/66k 18 89 Replace our knowledge fusion part with
attention filter in Wang et al ‘21.

We randomly select 1000 dialogues for 5 domains.
We use TransE embeddings in ConceptNet as initial knowledge vectors.
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Dataset MDC SGD
Domain Movie Restaurant Taxi Restaurant Flights
Model ID (Acc) | SL (F1) | ID (Acc) | SL(FI1) | ID (Acc) | SL(F1) | ID (Acc) | SL (F1) | ID (Acc) | SL (F1)
MID-SF [10] 76.56 67.56 77.35 65.77 85.03 70.03 74.26 81.38 84.74 84.48
ECA [20] 77.10 69.72 77.56 66.85 86.61 71.28 87.98 84.87 95.16 87.91
KASLUM [13] 81.86 7532 80.76 68.36 88.31 74.07 86.81 87.82 92.87 90.05
CASA [14] 84.22 79.59 83.17 74.89 90.00 78.54 92.54 94.20 95.00 91.79
KABEMar [15] 85.25 79.46 83.27 74.89 90.05 79.59 96.84 94.61 9717 91.14
KABEM 85.63 80.03 83.69 75.36 90.95 79.18 97.70 96.63 98.10 94.02
w/0 KG 86.01 79.92 83.53 74.76 90.56 78.29 9555 94.83 97.73 9223
w/o CA 84.87 79.79 81.35 74.68 89.00 78.50 95.88 94.36 7 W 91.94
w/o LSTM 84.57 79.14 82.70 74.35 89.65 79.00 90.96 93.64 94.80 91.33

« More powerful dialog context encoding network and interactions with knowledge.
» Contexts are useful for dialogue act detection.
« Knowledge is useful for slot filling.
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Visiualization of attention on globa”; knowledge pairs
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Utterance Example

I need a cheap food place for

Utterance 3 people tomorrow at 1pm in Seattle.

Dialog acts Request
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1. Human naturally refers commonsense knowledge to current contexts
for understanding.

2. We propose:
1. Context attention to encoder dialogs.
2. Knowledge attention to take commonsense knowledge into account.

3. The results achieve the best results on joint multi-intent detection and
slot filling tasks compared with several competitive baselines.

2,
! . ! ~ Let me figure out

N with contexts and
Yes, 2g Japanese works. | want to S A knowledge
reserve there. ' Fr=
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