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†Universitat Politècnica de Catalunya ?Insight Centre for Data Analytics – Dublin City University
∗Dolby Laboratories §University of California, Irvine
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ABSTRACT
Steganography comprises the mechanics of hiding data in a host me-
dia that may be publicly available. While previous works focused on
unimodal setups (e.g., hiding images in images, or hiding audio in au-
dio), PixInWav targets the multimodal case of hiding images in audio.
To this end, we propose a novel residual architecture operating on top
of short-time discrete cosine transform (STDCT) audio spectrograms.
Among our results, we find that the residual steganography setup we
propose allows an encoding of the hidden image that is independent
from the host audio without compromising quality. Accordingly,
while previous works require both host and hidden signals to hide
a signal, PixInWav can encode images offline—which can be later
hidden, in a residual fashion, into any audio signal.

Index Terms— steganography, multimodal, deep learning

1. INTRODUCTION

Steganography (with Greek roots: “steganós” meaning covered, and
“graphein” meaning writing) refers to the method of concealing a
container signal embedding a hidden signal within a host signal. The
resulting container signal may be sent through a publicly accessible
channel in a way that the hidden signal stays inconspicuous to poten-
tial observers. Steganography has benefited from recent advances in
deep learning, especially in the uni-modal front: image/video [1, 2] or
audio [3]. In this work, we focus on the unexplored multi-modal case
of hiding images in audio signals, such that the host signal is audio
and the hidden signal is an image. Hiding images into audio allows
the exploitation of existing audio infrastructures for image and video
distribution. For instance, analog broadcast radio may transport the
album cover of a song being played, loudspeakers in airports could
distribute maps or visual messages for the hearing impaired, or video
streams could be distributed to handheld devices of crowds located
in areas with insufficient mobile network capacity. The proposed
technical solution also has direct applications to watermarking, where
the hidden information is related to its content, thus enabling potential
provenance solutions; and to media forensics, where digital content
must be analyzed to determine whether it is authentic, fake, or if it
has been modified, so that backdoor attacks can be prevented [4].

Deep neural networks have attracted the attention of steganog-
raphy researchers, as they have the potential to learn the best repre-
sentations for hiding the secret signal within the host. Unlike classic
steganographic methods that encode the hidden signal within the
least significant bits of the host signal, deep learning approaches can
compress and spread the secret signal’s representation over all the
available bits. Previous deep learning approaches [1, 2, 5, 6] have
adopted architectures where both the host and hidden signals are fed
into a deep neural network to construct the container signal. Our
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Fig. 1: PixInWav proposes learning independent image representa-
tions that can be hidden within audio signals.

solution does not rely on this costly merge operation. Instead, our
proposed PixInWav model relies on a simple (yet effective) residual
architecture [7]: we train a neural encoder for the hidden image in-
dependently from the host, so that a fixed and learned representation
can be simply added to the audio spectrogram to build the container
signal—see Figure 1. Throughout our work, we show that it is not
necessary to learn a different representation for each hidden signal
depending on the host, since the same encoded representation of the
secret image can be added to any audio.

Our contributions can be summarized as follows: (a) we explore,
for the first time, a deep learning approach to hide images in audio
signals; (b) we address this task via a novel residual architecture
operating on top of a short-time discrete cosine transform (STDCT)
audio representation; and (c) we show that encoded images can be
created independently from the audio signal, such that they can be
pre-computed per image and later added to any arbitrary audio signal.
Finally, we also release code to reproduce our experiments:

https://github.com/margaritageleta/PixInWav

2. RELATED WORK

Hiding information in audio is a relatively unexplored research area.
Early works on audio steganography relied on signal processing and
audio coding [8, 9, 10, 11, 12], but recent advances rely on deep
learning [3]. Many early methods encode the hidden signal within
the perceptually least significant bits (LSB) of audio [9, 10, 11]. This
strategy was adopted by the only precedent, up to the author’s knowl-
edge, of hiding images in audio [12]. However, they treat images as a
generic digital signal. There was no learned visual representation, or
any special choice because of the visual nature of the hidden message.
Further, this work only provided very basic qualitative results, hiding
a single image into a single audio clip in a completely in silico setup.
Our experiments are much more extensive, exploring the effects of
different types of noise.



To the best of our knowledge, no previous works used deep
learning for hiding images into audio. Only Kreuk et al. [3] used
neural networks for audio steganography, to send multiple speech
recordings through a single host audio. Kreuk et al. [3] noted that
steganographic vision-oriented models are less suitable for audio, and
propose learning a steganographic function in the frequency domain.
To this end, they employ the short-time Fourier transform (STFT)
and describe the challenges associated with this complex transform
(that is normally decomposed as magnitude and phase). Although
many STFT-based audio models discard the phase, Kreuk et al. [3]
argue that discarding the phase is not practical since the decoder
will be forced to also infer the phase. To circumvent this challenge,
Kreuk et al. [3] propose using differentiable STFT layers as part of
their model. Our work also contributes to the discussion of which
deep learning architectures are more suitable for audio steganography:
(i) we propose using the short-time discrete cosine transform (STDCT,
a real-transform), instead of the STFT (a complex-transform, with
magnitude and phase) to avoid the above-mentioned challenges; and
(ii) we propose a novel residual architecture that hides a secret image
by adding a perceptually transparent perturbation to the host audio.

On the other hand, hiding information in image pixels has been
extensively explored, with significant progress achieved by recent
deep learning techniques [1, 2, 5, 13, 14, 15, 16, 17, 18]. Most deep
image steganography techniques rely on convolutional neural network
(CNN) encoders to hide the message within a host image, and a CNN
decoder to recover the hidden message. Such systems are generally
trained following a loss schema in which (i) the encoder is trained
to minimize a distortion over the host image; and (ii) the decoder
is trained to minimize the reconstruction loss over the (recovered)
secret image. Hence, the output of the encoder (container) includes
an image that is perceptually similar to the host image but contains a
(hidden) secret image—that the decoder can recover.

3. METHODOLOGY

PixInWav follows the classic encoder-decoder paradigm composed
of two networks, which are trained end-to-end, to hide images into
STDCT spectrograms. The encoder hides an image into a host spec-
trogram in the shape of a (perceptually transparent) perturbation. The
decoder is responsible for mapping the residually added perturbation
back to an RGB image, and it is trained to minimize the reconstruction
loss with respect to the revealed (or hidden) image. In our experi-
ments, we apply different degrees of noise on the container audio,
and assess its impact on the recovery of the secret image.

3.1. Residual Architecture

While previous deep steganography solutions have attempted to
jointly learn a representation for both the host and hidden signals,
we propose to learn a representation for the hidden image only, and
then add this into the host audio spectrogram. This residual-based
approach, inspired by the residual modules in ResNet [7], makes it
straightforward for the optimizer to fit an approximate identity func-
tion of the host signal, since this signal does not need to undergo a
series of transformations due to the steganographic embedding func-
tion, as has been the case in previous works [7]. Note that stegano-
graphic applications aim at learning an almost identity function of
the host signal, such that the hidden signal is unnoticeable during
transmission. Motivated by these ideas, we propose to simply add the
encoded image to the host audio in a residual fashion.

Fig. 2 (d) shows the proposed PixInWav residual architecture,
next to three other configurations we compared against in our ablation

study in Section 4.2. PixInWav encodes the hidden image and adds it
to the STDCT-spectrogram of the host audio. The resulting container
(stego-audio) is the signal to be transmitted and whose distortion with
respect to the host audio should be perceptually unnoticeable. At
the receiver end, a decoder reconstructs the hidden image, ideally,
with the minimum possible perceptual distortion. Both the encoder
and decoders are 2D fully convolutional neural networks with skip
connections, based on the U-Net [19]. The encoder part (hiding net-
work) contains both a contracting part (downsampling step) and an
expansive part (upsampling step). The contracting part is composed
by two downsampling modules, each one consisting of two 3×3 con-
volutions with stride 2 and 4, respectively. Each of the convolutional
layers is followed by a batch normalization and a Leaky ReLU acti-
vation function. The expansive part is composed by two upsampling
modules, each one composed of two transposed convolutional layers
and two convolutions with batch normalization. Each of these layers
have a kernel size of 3 × 3 and include a Leaky ReLU activation
function in between. The decoder (revealing network) is composed
of the same number of convolutional layers.

The 3-channel RGB images are augmented to four channels by
appending a zero channel, subject to a 2 × 2 pixel shuffle opera-
tion [20] to rearrange these four channels into the spatial dimensions.
This operation distributes color information into the spatial domain,
which makes it more straightforward for the encoding network to cre-
ate residuals to be added to the spectrogram that maintain the relevant
color information, and was shown necessary to obtain high-quality
color reconstruction. At the output of the revealing network, the
inverse pixel unshuffle operation is applied to rearrange the spatial
information back into the color channels.

3.2. Audio Representation

Previous work on audio steganography relied on differentiable STFT
layers to learn a steganographic function in the frequency domain [3].
In line with that, note that (STFT or STDCT) spectrograms are 2D au-
dio representations that allow for a natural way to hide (in a residual
fashion) images into audio—since one can exploit the 2D nature of
spectrograms to hide images while preserving locality. For that rea-
son, we discarded relying on a waveform-based model, because this
would require encoding the image in a 1D signal. Further, note that
the spectrogram representation we study (the STDCT) is a determinis-
tic operation allowing perfect (inverse) reconstruction. Consequently,
via employing spectrograms for residual audio steganography, we
preserve the simplicity of not requiring an encoder for the host signal—
but we expand our approach by allowing it to also encode locality.

As noted in previous section, using STFT-based setups can intro-
duce difficulties related to phase reconstruction. To overcome this
problem, we propose using the short-time discrete cosine transform
(STDCT, a real-transform), instead of the STFT (a complex-transform,
with magnitude and phase) as a simple but effective way to overcome
phase-related issues. In short, the main difference between STFT
and STDCT is the type of basis function used by each transform: the
STFT uses a set of harmonically-related complex exponential basis,
while the STDCT uses (real-valued) cosine basis [21]. Our setup
relies on the type-2 DCT.

3.3. Loss function

PixInWav is trained with a loss function allowing a trade-off between:
low distortion of the host audio, and the reconstruction quality of the
hidden image. This can be expressed as a convex combination of two
reconstruction losses with a trade-off hyperparameter β ∈ [0, 1].
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(a) Res-Scale: Residual cover-independent scaling.
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(b) Plain-Dep: Plain cover-dependent encoding.
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(c) Res-Dep: Residual cover-dependent encoding.
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(d) Res-Indep: Residual cover-independent encoding (PixInWav).

Fig. 2: Neural architectures for hiding images in audio spectrograms: The proposed PixInWav architecture corresponds to the Res-Indep
setup. In our ablation study, we compare against these three alternative solutions: Res-Scale, Plain-Dep and Res-Dep.

Let s be the hidden image, s′ the revealed image, C the host
spectrogram and C′ the container spectrogram. The steganographic
system is trained by minimizing the addition of the image and spec-
trogram reconstruction errors:

L(s, s′, C, C′) = β‖s− s′‖1 + (1− β)‖C − C′‖2. (1)

The loss function adopts a simple mean squared error (MSE) for the
reconstruction of the host audio, but uses the mean absolute error
(MAE) to measure image reconstruction quality. Using both L2 in
the image and audio domain delivered worse results.

In our experiments, we also added an additional term to equa-
tion (1), the soft dynamic time warping (DTW) discrepancy [22]
(with γ = 1) between the host waveform and the container waveform.
The term is modulated by a constant λ = 10−4 to make it comparable
in magnitude to the loss in (1), giving a total loss of:

Ltotal(s, s
′, C, C′) = L(s, s′, C, C′) + λ dtwγ(c, c

′), (2)

where c and c′ are the original and reconstructed waveforms (i.e., c =
STDCT−1(C)). This additional term encourages the temporal align-
ment between the host and container audios.

4. EXPERIMENTS

4.1. Setup

Dataset: The audio signals used in this study correspond to the
FSDnoisy18K dataset [23]. This dataset contains 18,532 audio clips
across 20 sound classes, depicting a large variety of sounds, such as
voice, music, or noise. Since the duration of each clip is variable, we
randomly select audios of approximately 1.5 seconds at 44,100Hz.
We computed the STDCT transform with a frame length 212 and a
hop size of 26 − 2. These hyperparameters where chosen to obtain a
spectrogram with width and height being powers of 2, which allows
for efficient computations. RGB images were sampled from the

ImageNet (ILSVRC2012) dataset [24]. 10,000 randomly sampled
images were used to train PixInWav, while validation results are
reported over a non-overlapping partition of 900 images. Each RGB
image was resized, cropped and normalized, resulting in a 256 ×
256× 3 image, and paired with a randomly selected sound from the
audio dataset.

Training details: The model was trained with Adam at a learning
rate (lr) of 0.01 and a batch size of 1. Additional experiments with
lr = 0.1, 0.001 did not converge. Leaky-ReLUs are set to α = 0.8.
The revealed image at the output is clipped in the range of [0, 1] and
denormalized back to the range of RGB values: [0, 255].

Evaluation metrics: The inclusion of the image into the audio
signal introduces a distortion, which we measure with the signal-to-
noise-ratio (SNR) over the waveform—where the noise corresponds
to the difference between the host and container audios. We adopted
SNR as audio quality metric because it is widely used among related
works [3, 8]. Analogously, the image also suffers a distortion as a
result of encoding it into audio with the hiding network, and decoding
it with the reveal network. We measure the visual distortion with
the Structural Similarity Index (SSIM) [25], a metric that takes into
consideration the perceptual properties of the human visual system. In
addition, we also provide results in peak signal-to-noise-ratio (PSNR),
to allow contrasting our values with the literature [5].

4.2. Results

Trade-off between audio-image distortions: PixInWav was trained
with different distortion trade-offs between the host audio and the
hidden image, governed by the β parameter of the loss function. The
impact of β is studied from a quantitative (Fig. 3) and qualitative
(Fig. 4) perspective.

As expected, lower β values preserve better the quality of the
audio, while higher ones allow a better recovery of the hidden image,
at the expense of a reduction of audio SNR. The obtained results
demonstrate that PixInWav can meet perceptually acceptable quality
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Fig. 3: Quality trade-off between the host audio (left) and the hid-
den image (right). x-axis: the hyperparameter β that controls the
distortion between the two. Results after training for 8 epochs.

Fig. 4: Effect of β on the image and spectrogram. Each column refers
to a β = {0.05, 0.1, 0.5, 0.9}, respectively.

standards for both the host audio and the hidden image. As a reference,
it is considered that listeners will barely notice any distortion when the
audio SNR is above 20 dB, and intelligibility will still be reasonable
at 0 dB SNR (speech energy and noise energy being the same) [26].
In the remainder of our experiments, we set a β of 0.05, which
corresponds to an average audio SNR of 18.26 dB and an average
SSIM of 0.921 for a model trained during 8 epochs.

Dynamic time warping loss on audio: Fig. 3 plots the cor-
responding SNR and SSIM values if the DTW loss term was not
included. The results show the importance of this term, as removing
it drops the audio SNR more than 10 dB, moving below the 0 dB case
for most tested β. On the other hand, the DTW loss term applied over
the audio signal actually introduces only a small distortion over the
images, unnoticeable for a human.

Ablation study: The Res-Indep architecture we proposed for
PixInWav (in Section 3.1) is now compared with the other three
approaches we depict in Fig. 2: Res-Scale, Plain-Dep and Res-Dep.
Plain-Dep is used to compare our residual approach with a classic
feedforward encoder-decoder architecture. Res-Dep shows the effect
of conditioning the hiding network on both the image and the host
audio. And Res-Scale is included to check if the hiding network is not
simply uniformly encoding the image signal in the low-order bits of
the host signal. We compared the four solutions based on quantitative
(see Table 1) and qualitative results (in Fig. 5).

The best quantitative and qualitative results are obtained with the
Res-Dep and Res-Indep solutions, both achieving similar performance
and learning behaviour. Nevertheless, Res-Indep is a much more
scalable solution because it uses an image representation that does
not depend on the host audio, while Res-Dep requires the computation
of a specific transformation for each audio snippet. Regarding the
other two options, Res-Scale prevents the image from being recovered,
while Plain-Dep fails at transmitting the audio.

Audio Image
Architecture SNR ↑ SSIM ↑ PSNR ↑

Res-Scale 14.66 0.5414 19.52
Plain-Dep −0.73 0.971 32.70
Res-Dep 18.80 0.919 27.29
Res-Indep 18.33 0.923 27.37

Table 1: Ablation study: Audio and image quality metrics for a
fixed β = 0.05 with PixInWav and the three considered baselines.
Results after training for 5 epochs.

Res-Scale Plain-Dep Res-Dep Res-Indep

Fig. 5: Qualitative comparison between architectures: Res-Scale
fails in transmitting the image and Plain-Dep allows a visible in-
terference of the image over the spectrogram. On the other hand,
Res-Dep and Res-Indep provide similar qualitative results, while the
later reproduces more similar colors to the original image.

Embedding capacity: We transmit a 256×256 color image (3
channels) of 8 bits per pixel. Each audio clip contains 67,522 samples
at a sampling rate of 44,100 Hz, which corresponds to 1.53 seconds
per clip. These values result in a transmission rate of 988 Kbps.

Computational cost of the method: Both the hidden and reveal
networks are identical and contain 482,090 parameters. The total
computation cost of encoding, adding and decoding an image is of
197.31 GMAC (Giga multiply-accumulate operations).

5. CONCLUSIONS

This paper presents pioneering work on deep multimodal steganogra-
phy in which we have explored the transmission of visual information
over audio. Our residual approach to deep steganography proposes
obtaining an encoding of the hidden image that can be directly added
to the host audio. Importantly, those hidden image encodings can be
computed independently from the host audio, which makes the system
much more scalable than previous approaches. We also found that the
following strategies were beneficial for training: (i) adding a DTW
loss term, and (ii) employing the pixel shuffle layer for encoding the
hidden image.

6. ACKNOWLEDGEMENTS

Work partially supported by the European Union through the Eras-
mus+ student mobility program, Science Foundation Ireland (SFI)
under grant numbers SFI/15/SIRG/3283 and SFI/12/RC/2289 P2,
and the Spanish Research Agency (AEI) under project PID2020-
117142GB-I00 of the call MCIN/ AEI /10.13039/501100011033.



7. REFERENCES

[1] Matthew Tancik, Ben Mildenhall, and Ren Ng, “Stegastamp:
Invisible hyperlinks in physical photographs,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 2117–2126.

[2] Jiren Zhu, Russell Kaplan, Justin Johnson, and Li Fei-Fei, “Hid-
den: Hiding data with deep networks,” in Proceedings of the
European conference on computer vision (ECCV), 2018, pp.
657–672.

[3] Felix Kreuk, Yossi Adi, Bhiksha Raj, Rita Singh, and Joseph
Keshet, “Hide and speak: Towards deep neural networks for
speech steganography,” Proc. Interspeech 2020, pp. 4656–4660,
2020.

[4] Shaofeng Li, Minhui Xue, Benjamin Zhao, Haojin Zhu, and
Xinpeng Zhang, “Invisible backdoor attacks on deep neural
networks via steganography and regularization,” IEEE Transac-
tions on Dependable and Secure Computing, 2020.

[5] Shumeet Baluja, “Hiding images within images,” IEEE trans-
actions on pattern analysis and machine intelligence, vol. 42,
no. 7, pp. 1685–1697, 2019.

[6] Xintao Duan, Kai Jia, Baoxia Li, Daidou Guo, En Zhang, and
Chuan Qin, “Reversible image steganography scheme based on
a U-Net structure,” IEEE Access, vol. 7, pp. 9314–9323, 2019.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun,
“Deep residual learning for image recognition,” in Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[8] Rully Adrian Santosa and Paul Bao, “Audio-to-image wavelet
transform based audio steganography,” in 47th International
Symposium ELMAR, 2005. IEEE, 2005, pp. 209–212.

[9] Mohammed Salem Atoum, Subariah Ibrahimn, Ghazali Sulong,
Akram Zeki, and Adamu Abubakar, “Exploring the challenges
of mp3 audio steganography,” in 2013 International Conference
on Advanced Computer Science Applications and Technologies.
IEEE, 2013, pp. 156–161.

[10] N. Cvejic, “Algorithms for audio watermarking and steganog-
raphy,” 2004, Department of Electrical and Information En-
gineering, Information Processing Laboratory, University of
Oulu.

[11] Kadir Tekeli and Rifat Asliyan, “A comparison of echo hiding
methods,” The Eurasia Proceedings of Science Technology
Engineering and Mathematics, vol. 1, pp. 397–403, 2017.

[12] Dalal N Hmood, Khamael A Khudhiar, and Mohammad S
Altaei, “A new steganographic method for embedded image
in audio file,” International Journal of Computer Science and
Security (IJCSS), vol. 6, no. 2, pp. 135–141, 2012.

[13] Linjie Guo, Jiangqun Ni, and Yun Qing Shi, “An efficient jpeg
steganographic scheme using uniform embedding,” in 2012
IEEE International Workshop on Information Forensics and
Security (WIFS). IEEE, 2012, pp. 169–174.
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