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‣ Learn audio representation using self-supervised wav2vec 2.0 task 
and conformer architecture 

‣ Evaluate the generality of the representations on diverse non-speech 
audio tasks

Our self-supervised learning pipeline 
‣ 67k hours of de-identified non-speech sounds from Facebook 

‣ Fine-tuning during downstream adaptation

1. Objective and Setup

‣ Baseline models 
‣ Self-supervised (SS) + shallow and supervised (S) + shallow 

‣ cf_L outperforms SS baselines for ESC50 & full AudioSet 

‣ cf_L is 7.6% (19.1%) worse than S baselines in ESC50 (FSD curated) 

‣ Pre-trained on AudioSet -> overlap with ESC50 & FSD in label-space

3. Sound Event Detection

‣ cf_L outperforms SoTA in audio-only SS by 25% with mAP of 0.411 

‣ Competitive even to the best multimodal SSL work on AudioSet 

‣ Worse than ImageNet pre-trained models and some models trained from 
scratch

5. Prior Works on AudioSet 

‣ Conformer models are competitive (if not better) compared to baselines 

‣ Self-supervised (SS) still to be explored for some datasets

4. Other Non-Speech Audio Tasks

6. Hyperparameter Optimization

‣ Models trained from scratch worse than pre-trained counterparts 

‣ Pre-training helps reduce the need for labeled data by two-thirds

7. Effect of Pre-training

Poster Number: 
3268

8. Avoiding Overfitting

‣ Self attention for global 
interactions 

‣ Convolution for local 
correlations 

‣ Conformer Small: cf_S (~18M)  

‣ 12 conformer layers, 256 encoder 
dim, feed-forward network dim 
1024, heads 8 

‣ Conformer Large: cf_L (~88M) 

‣ 12 conformer layers, 768 encoder 
dim, feed-forward network dim 
1024, heads 12

‣ Task: Identify true latent 
representation for a masked 
time step within a set of K + 1 
candidates 

‣ Feature Encoder: Stacked 
spectrogram into latent 
representation 

‣ Context Encoder: Linear layer 
+ N conformer blocks

Contrastive task in wav2vec 2.0

Conformer architecture and conformer block

2. Wav2vec 2.0 & Conformer

‣ 3-stage learning rate scheduler 
‣ warmup, hold, exponential decay
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‣ No significant change in performance with the variation in heads 

‣ Trendline shows a larger variation in Balanced AudioSet for 
variation in conformer blocks and pre-training data

‣ Batch Size 
‣ high-resource datasets perform best with larger batches 

‣ Dropout in output layer of pre-trained conformer
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