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1. Feature-Enriched MF-SLU: Spoken Language Understanding by Matrix Factorization

‘_/_ FJ please contact vivian}  Data: speech data collected from users, with intents from 13 frequently accessed domains in Google Play (WER = 19.8%)
Ny =

Skype, Hangout, etc.

Communication *» Lexical Matrix * Enriched Semantics Matrix “* Intent Matrix
» Challenge of typical SDS: Predefined Ontology & Hidden Semantics » Main idea: use manually » Main idea: slot types and word embeddings help infer semantics for ¢ Main idea: retrieve the apps
. . . . . . . inti | | | that are most likely to support
1) Predefined domain ontology is required to support corresponding functionality authored app description as it expanding domain knowledge | Y 1O SUPPOT
should describe the app’s . e users’ requests, for self-training
= Structured knowledge resources are available (e.g. Freebase, Wikipedia, functionality * Entity Type from Structured Knowledge (e.g. Wikipedia/Freebase)

FrameNet) and may provide semantic information

AAAAAA . Q: play lady gaga’s bad romance ...

Lady
From Wikipeda. the fr
. ts before ™)
M ft Outlook v
ooooooooo ) N
Microsoft Corporation Productivity khkkd 507002 2 g : d:ar;&‘ MeQ Q‘s mvaf M;;S ;Esy pu;; 1,‘ i .
€ Everyone £ ) % 5o L
- . ) A F,_ \ \
nis app is compatible with some of your devices |/ A i
N 1 e
1 ab tchfork Media, and
acq usic Video. In the United
G ’ : s t, & f:a X ! s e c:e'ﬂ;:mes plat '::.t, the Single by Lady Gaga
music videos. With g 4, she is one o A a B Recording Industry Association of America (RIAA), having sold 5.503 million digital downloads as of September 2014, It R i
the best-seling mus Music Awards Gaga performing at her AnRave: The APy ki useA i e innis iy Mo i akarts I s el Al aslvie. “slilonadakis alinn 4% cnlRAc amediis inddida
She requiarly appear 4 was named 8 concert tour n August 2014
Be more on-the-go Con accounts from all Schedule your days in no time d . ° . ° °
ma
IS an American songwritep and IS )by American singer
see eee @ — see
»
5 - I}

2) Hidden semantics may contain important semantics

= Implicit information helps infer feature relations
» Approach: Feature-Enriched MF-SLU
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Intents by returning relevant apps that provide
desired functionality either locally available or
by suggesting Installation of suitable apps In
an unsupervised way.
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3. make a phone call 8. share the photo 12. translation LM MF-SLU LM MF-SLU :

. e . to improve Intent * The framework can flexibly extend to
e b > ] Word Observation 28.6 29.5 (+3.4%) 29.2 30.1 (+2.8%) ediction incorporate different-level features for

4 video chat ‘O, e + Embedding-Enriched Semantics 312  325(+4.3%) 320  33.0 (+3.4%) P ' improving a system's ability to assist users

9. share the \;;idou 13. readwthe book + Type-Embedding-Enriched Semantics 31 3 30.6 (-2.3%) 32 5 34.7 (+6.8%) pursuing personalized multi-app activities.

_ — _ _  The effectiveness of the feature-enriched MF-
5" » Type Information inferred from ASR results may not be accurate enough; noisy enriched SLU model can be shown for different domains,
Information could be degrading performance. indicating good generality and provides a
» When there are no recognition errors, accurate type information benefits performance. promising direction for future work.




