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How Humans Learn?
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Humans generalize experience from learned tasks
Humans learn to learn



Meta-learning with Fewer Tasks

Ideal Scenario
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Overcoming domain generalized few-shot image
classification via the MRN

We propose meta regularization network (MRN), which aims to learn a
domain-invariant discriminative feature space by using a learning to learn
update strategy.
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Solution: Overview

How can we learn domain-invariant feature sapce?

In MRN, we learn a domain-invariant feature
space by using a learning to learn update
strategy with three steps:

1. Randomly pick two tasks J,5 and T,
(ps is pseudo-seen and pu is pseudo-
unseen domains)

2. Jps is used to update the model
parameters Fg and Cy with the MRN
loss L., and cross-entropy loss L.,

3. Remove the MRN from the framework
and use the updated model to
calculate the loss of 75, to update the
MRN
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Experiments: Overview

* Q1: Does the MRN improves the performance of meta-learning
methods?

* Q2: How is its performances compared with state-of-the-art
approaches?

* Q3: How do different regularization, i.e., L1-norm or L2-norm, affect
the performance?



Q1: Does the MRN improves the performance of meta-

learning methods?

Four datasets

minilmageNet; CUB-200-2011; tieredimageNet; CIFAR-FS
The leave one-domain0O-out setting is adopted to select an unseen

domain.
Table 1. Classification average testing accuracy (%)
minilmageNet rieredlmageNet CUB-200-2011 CIFAR-FS
S-way MRN ; . - . . : . .
. 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MAMLE_ 3518 _ _ _ 4582 _ _ 3083 _ _ 4591 _ _ 3006 _ _ 228 __ _ B _ _ _ 3128_

MAML [3]_ v 43300002 _62.33 (zl6sh)_ 4239 1176 3983 (+1397) 3347 (~446) 4763535 39.27 365 48.61 (11133,
Prototypical Network [6] _ _ _ _ 4772 6483 4350 5804 3947 5536 _ _ 3887 _ 5441 _
Prototypical Network [6] _ v _ _33.77 (1603 _ 68.00 w32y _ 4667317 6423 06l9) 42320285 6083 Gsdn_ 4133246 3891 (4430)




Q2: How is its performances compared with state-of-the-
art approaches?

Table 2. Average accuracy (%) comparison to state-of-the-arts.

minilmageNet tieredlmageNet CUB-200-2011 CIFAR-FS
S-way  Backbone 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot
Relation Network LFT [16] ResNetl0) 55234014 72.561+081 4875+£080 63.241+091 4567+078 64751047 4479+031 60.121+045
Matchyng Network LFT [16] __ ResNetl0 _5601L£031 73451065 _4931L£021 65411045 45124065 65141074 _4598+031 59124034
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Fig. 3. The t-SNE visualization of the embedding distribu-
tions learned by MAML without (a)/(c) or with (b)/(d) the

MRN. The model is tested on rieredIlmageNet datatset.



Table 3. Average testing accuracy (%).

Q3: Ablation study

S5-way-1-shot | minilmageNet tieredlmageNet CUB-200-2011 CIFAR-F5S
Ly 48. 181037 44,83 +0.57 39.96+0.45 38.62+0.55

L 48.63+0.35 45.95+0.38 40.0640.42 38.79+0.58
Flatten _ | 52.98+038 46.231+037_ 43214046 42.63+0.54
MLP _ _|_ 53770061 _ _ 46672068 _ _ 032k0e _ 413305
S5-way-53-shot | minilmageNet tieredlmageNet CUB-200-2011 CIFAR-F5S
L4 64.8210.47 59.91+0.47 53.28+0.58 56.28+0.58

L 63.23+0.37 58.98+0.37 536.32+0.42 53.78+x0.48
Flatten | 67.95+035 63.062035 60.01+041  57.98+0.69
™MLP 68.05+0.56 64.23-+0.75 60.83-+0.44 58.91-+0.55]




Takeaways

* Learning a domain-invariant feature space can improve
generalization in few-shot image classification under domain
generalization setting.

* MRN achieves this by a learning to learn update strategy and is
compatible with any meta-learning algorithms.
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