

Domain Generalized Few-Shot Image Classification Via Meta Regularization Network

Min Zhang^{1,2}, Siteng Huang², Donglin Wang² ¹Zhejiang University, ²Westlake University

How Humans Learn?

Can we enable the computer to explicitly learn priors from previous experience that lead to efficient new task learning? — Meta-learning

Connect

Task Pool

Humans generalize experience from learned tasks Humans learn to learn

Meta-learning with Fewer Tasks

Ideal Scenario

Meta-training phase

Meta-testing phase

Real-world Scenario

Prior

Overcoming domain generalized few-shot image classification via the MRN

We propose **meta regularization network (MRN)**, which aims to learn a **domain-invariant discriminative feature space** by using a learning to learn update strategy.

Solution: Overview

How can we learn domain-invariant feature sapce?

In MRN, we learn a domain-invariant feature space by using a learning to learn update strategy with three steps:

- 1. Randomly pick two tasks \mathcal{T}_{ps} and \mathcal{T}_{pu} (*ps* is pseudo-seen and *pu* is pseudounseen domains)
- 2. T_{ps} is used to update the model parameters F_{θ} and C_{ϕ} with the MRN loss L_{mrn} and cross-entropy loss L_{ce}
- 3. Remove the MRN from the framework and use the updated model to calculate the loss of \mathcal{T}_{pu} to update the MRN

Experiments: Overview

- Q1: Does the MRN improves the performance of meta-learning methods?
- Q2: How is its performances compared with state-of-the-art approaches?
- Q3: How do different regularization, *i.e.*, L1-norm or L2-norm, affect the performance?

Q1: Does the MRN improves the performance of metalearning methods?

Four datasets

minilmageNet; CUB-200-2011; tieredImageNet; CIFAR-FS

The leave one-domain0-out setting is adopted to select an unseen domain.

				,					
		miniImageNet		tieredImageNet		CUB-200-2011		CIFAR-FS	
5-way	MRN	1-shot	5-shot	1-shot	5-shot	1-shot	5-shot	1-shot	5-shot
MAML [3]		35.18	45.82	30.83	45.91	30.96	42.28	35.62	37.28
MAML [3]	\checkmark	45.30 (+10.12)	62.33 (+16.51)	42.59 (+11.76)	59.83 (+13.92)	35.42 (+4.46)	47.63 (+5.35)	39.27 (+3.65)	48.61 (+11.33)
Prototypical Network [6]		47.72	64.83	43.50	58.04	39.47	55.36	38.87	54.41
Prototypical Network [6]	\checkmark	53.77 (+6.05)	68.05 (+3.22)	46.67 (+3.17)	64.23 (+6.19)	42.32 (+2.85)	60.83 (+5.47)	41.33 (+2.46)	58.91 (+4.50)

Table 1. Classification average testing accuracy (%)

Q2: How is its performances compared with state-of-theart approaches?

Table 2. Average accuracy (70) comparison to state-or-unc-arts.									
_	Backbone	miniImageNet		tieredImageNet		CUB-200-2011		CIFAR-FS	
5-way		1-shot	5-shot	1-shot	5-shot	1-shot	5-shot	1-shot	5-shot
Relation Network LFT [16]	ResNet10	55.23±0.14	72.56 ± 0.81	48.75 ± 0.89	63.24 ± 0.91	45.67±0.78	64.75±0.47	44.79±0.31	60.12 ± 0.45
Matching Network LFT [16]	ResNet10	<u>56.01±0.31</u>	73.45±0.65	49.31±0.21	<u>65.41±0.45</u>	45.12±0.65	<u>65.14±0.74</u>	45.98±0.31	<u>59.12±0.34</u>
ProtoNet MRN (ours)	ResNet10	56.99±0.61	75.16 ± 0.48	50.31±0.12	68.23 ± 0.47	48.32±0.45	66.85±0.31	47.23±0.18	64.52±0.25

 Table 2. Average accuracy (%) comparison to state-of-the-arts.

Fig. 3. The t-SNE visualization of the embedding distributions learned by MAML without (a)/(c) or with (b)/(d) the MRN. The model is tested on *tiered*ImageNet dataset.

Q3: Ablation study

5-way-1-shot	<i>mini</i> ImageNet	tieredImageNet	CUB-200-2011	CIFAR-FS
L_1	48.18±0.37	44.83±0.57	39.96±0.45	38.62±0.55
L_2	48.63±0.35	45.95±0.38	40.06 ± 0.42	38.79 ± 0.58
Flatten	52.98±0.38	46.23±0.37	43.21±0.46	42.63 ± 0.54
MLP	53.77±0.61	46.67±0.68	42.32 ± 0.62	41.33 ± 0.59
E man E alaat			CUTE 200 2011	CIEL D. DO
5-way-5-snot	<i>munu</i> lmageNet	<i>tiered</i> ImageNet	CUB-200-2011	CIFAR-FS
5-way-5-shot	64.82±0.47	59.91±0.47	CUB-200-2011 55.28±0.58	CIFAR-FS 56.28±0.58
L ₁ L ₂	64.82±0.47 65.23±0.37	<i>tiered</i> ImageNet 59.91±0.47 58.98±0.37	CUB-200-2011 55.28±0.58 56.32±0.42	CIFAR-FS 56.28±0.58 55.78±0.48
L ₁ L ₂ Flatten	64.82±0.47 65.23±0.37 67.95±0.35	tieredImageNet 59.91±0.47 58.98±0.37 63.06±0.35	CUB-200-2011 55.28±0.58 56.32±0.42 60.01±0.41	CIFAR-FS 56.28±0.58 55.78±0.48 57.98±0.69
L ₁ L ₂ Flatten MLP	<i>mini</i> ImageNet 64.82±0.47 65.23±0.37 67.95±0.35 68.05±0.56	tieredImageNet 59.91±0.47 58.98±0.37 63.06±0.35 64.23±0.75	$\begin{array}{r} \text{CUB-200-2011} \\ 55.28 \pm 0.58 \\ 56.32 \pm 0.42 \\ \underline{60.01 \pm 0.41} \\ \hline \mathbf{60.83 \pm 0.44} \end{array}$	CIFAR-FS 56.28 ± 0.58 55.78 ± 0.48 57.98 ± 0.69 58.91 ± 0.55

Table 3. Average testing accuracy (%).

Takeaways

- Learning a domain-invariant feature space can improve generalization in few-shot image classification under domain generalization setting.
- MRN achieves this by a learning to learn update strategy and is compatible with any meta-learning algorithms.

Thanks Q & A