Learning Expanding Graphs for Signal Interpolation

Bishwadeep Das[@]* Elvin Isufi[@]*

[@]b.das@tudelft.nl, [@]e.isufi@tudelft.nl, *Multimedia Computing Group, TU Delft

Introduction

- Graph data processing, i.e., interpolation, classification usually done over fixed-size static and dynamic graphs.
- New nodes often emerge, increasing graph size, often without information (e.g. cold start recommendation).
- Existing works either assume known connectivity of new nodes, or independent attachment and data-processing.
- First term bias, second variance of prediction at v_+ .
- Not always convex, solved using projected gradient descent

Results

• We propose a data-driven, task-aware stochastic attachment of new nodes, focusing on signal interpolation.

Problem Formulation

- Graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, adjacency matrix \mathbf{A} , signal \mathbf{x} . Directed edge of weight w_i from $v_i \in \mathcal{V}$ to v_+ with prob p_i .
- Attachment vector a₊ with [a₊]_k = w_k if v₊ connects to v_k. a₊ has mean w ο p, covariance Σ₊. p, w attachment
- New adjacency matrix $\mathbf{A}_{+} = \begin{bmatrix} \mathbf{A} & \mathbf{0}_{+} \\ \mathbf{a}_{+}^{\top} & \mathbf{0} \end{bmatrix}$

• *Synthetic*: ER and BA graphs with 100 nodes, band-limited signals for order three filter.

	Erdős-Rényi			Barabasi-Albert		
	Prop.	Pref.	Rand.	Prop.	Pref.	Rand.
MSE	0.03	0.06	0.06	0.05	0.1	80.0
Std.	0.003	0.003	0.003	0.006	0.006	0.006
Table 1: Caption						

- Proposed outperforms topology-aware random attachments
- *Real*: Item cold start item collaborative filtering on Movielens 100K
- Trained on three sets of items-with low, medium and high number of interactions

2.5

parameters.

- Estimate (\mathbf{p}, \mathbf{w}) over training set $\mathcal{T} =$ $\{(v_{t+}, x_{t+}, \mathbf{a}_{t+})\}_t$ with x_{t+}, \mathbf{a}_{t+} observed signals and attachments.
- Figure 1: Incoming node attaching to an existing graph of five nodes.

Signal Interpolation on Incoming Nodes

- Order L graph filter with coefficients ${\bf h}$ and shift ${\bf A}_+$ outputs at v_+

$$y_{+} = \mathbf{a}_{+}^{\top} \sum_{l=1}^{L} h_{l} \mathbf{A}_{+}^{l} \mathbf{x} = \mathbf{a}_{+}^{\top} \mathbf{A}_{x} \mathbf{h}$$
(1)

We now solve (\mathbf{p}, \mathbf{w}) via

$$\min_{\mathbf{p}, \mathbf{w}} \mathsf{MSE}_{\mathcal{T}}(\mathbf{p}, \mathbf{w}) + \sum_{t=1}^{|\mathcal{T}|} \left(\mu_p ||\mathbf{p} - \mathbf{b}_{t+}||_q^q + \mu_w ||\mathbf{w} - \mathbf{a}_{t+}||_q^q \right)$$
$$\mathbf{p} \in [0, 1]^N, \mathbf{w} \in \mathcal{W}$$

• Lowest error with low items (challenging scenario), robust for items with many interactions. Shows benefit of proposed model and problem formulation.

Conclusion

- We proposed learning a topology, data and task-aware attachment model for growing graphs.
- Solve for parameters via projected gradient descent.

$$\mathsf{MSE}_{\mathcal{T}}(\mathbf{p}, \mathbf{w}) = \|(\mathbf{w} \circ \mathbf{p})^{\top} \mathbf{A}_x \mathbf{h} - x_{+}^{\star}\|_2^2 + \mathbf{h}^{\top} \mathbf{A}_x^{\top} \mathbf{\Sigma}_{+} \mathbf{A}_x \mathbf{h} \quad (2)$$

- Outperform other attachment rules on real and synthetic data.
- Future work to address sequence of incoming nodes.

Multimedia Computing Group