Learning Expanding Graphs for Signal Interpolation

Bishwadeep Das and Elvin Isufi

B.Das@tudelft.nl

Introduction

- Typically, data Processing on graphs operations work with fixed-size graphs
- Graphs often grow in size
- This makes processing data over expanding graphs a challenge

Example: Recommendation Systems

Ratings	Item 1	Item 2		Item I
User 1		?		
User 2		?	?	?
	?		?	
User 8		?		?
New	?	?	?	?

Ratings Matrix

User graph for one item

- Graph filters process ratings over user graph to predict preferences for existing users¹ (white cells of matrix)
- New user has no data, cannot attach to the user graph

Delft 1. Huang, W., et. al, Rating prediction via graph signal processing

Related works and Gap

- All approaches rely on some information about the new node to operate, be it signal (Topology ID, Link Prediction), its connectivity (Link Prediction, related works)
- Existing works on expanding graphs require incoming node connectivity^{2,3}, or estimate it from features⁴

Gap: Find a way to figure connectivity and subsequent data-processing for new nodes approaching a graph when no information is available

Problem Formulation

We consider a stochastic attachment model^{5,6}

- Node v_+ attaches to v_i with probability p_i and edge weight w_i
- Edges directed towards v_+
- Attachment vector $\mathbf{a}_+ \in \mathbf{R}^N$, $[\mathbf{a}_+]_i = w_i$ with prob. p_i

5. Erdos, P. and Rényi, A., On the evolution of random graphs
 6. Barabási, A.L. and Albert, R., Emergence of scaling in random networks

Prob. Formulation (contd.)

- Expanded adjacency matrix: $\mathbf{A}_{+} = \begin{bmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{a}_{+}^{\mathsf{T}} & \mathbf{0} \end{bmatrix}$
- v_+ has signal x_+ , we have the expanded signal $\mathbf{x}_+ = [\mathbf{x}, x_+]^\top$
- \mathbf{a}_+ is an element-wise independent weighted Bernoulli random vector
- Its expectation is $\mathbb{E}[\mathbf{a}_+] = \mathbf{w} \circ \mathbf{p}$ and covariance $\Sigma_+ = \text{diag}(\mathbf{w}^{\circ 2} \circ \mathbf{p} \circ (\mathbf{1} \mathbf{p}))$

• The adj. matrix after attachment obeys
$$\mathbb{E}[\mathbf{A}_+] = \begin{bmatrix} \mathbf{A} & \mathbf{0} \\ (\mathbf{p} \cdot \mathbf{w})^\top & \mathbf{0} \end{bmatrix}$$

TUDelft

Adaption to a task

- Main task is to solve the parameters w, p relative to a task
- Use training set $\mathcal{T} = \{(v_{t+}, x_{t+}, \mathbf{a}_{t+}, \mathbf{b}_{t+})\}_t$ for empirical risk minimisation
- v_{t+} : *t*-th node sample, x_{t+} : incoming node signal/ label
- \mathbf{a}_{t+} : sample attachment pattern , \mathbf{b}_{t+} : binary sample attachment pattern

Adaption to a task

• Task-specific cost $f_{\mathcal{T}}(\mathbf{p}, \mathbf{w}, \mathbf{x}_{t+})$

We solve

$$\min_{\mathbf{p}, \mathbf{w}} \mathbb{E} \left[f_{\mathcal{T}}(\mathbf{p}, \mathbf{w}, \mathbf{x}_{t+}) \right] + g_{\mathcal{T}}(\mathbf{p}, \mathbf{b}_{t+}) + h_{\mathcal{T}}(\mathbf{w}, \mathbf{a}_{t+})$$
subject to $\mathbf{p} \in [0, 1]^N, \mathbf{w} \in \mathcal{W}$

 $g_{\mathcal{T}}(\cdot), h_{\mathcal{T}}(\cdot)$ act as regularisers, \mathcal{W} : constraint set for edge weights

Task: Interpolation at incoming node

- Predict signal at an incoming node with no prior information
- Node attaches to \mathcal{G} , expanded signal $\mathbf{x}_{+} = [\mathbf{x}, 0]^{\mathsf{T}}$ before interpolation
- For interpolation we use FIR graph filters⁷ with shift operator A_+

• Filter Output
$$\mathbf{y}_{+} = \sum_{l=1}^{L} h_l \mathbf{A}_{+}^l \mathbf{x}_{+}$$
, filter $\mathbf{h} = [h_1, \dots, h_L]^{\top}$

• Interested in the error $\mathbb{E}[([\mathbf{y}_+]_{N+1} - x_+)^2]$

Task: Interpolation at incoming node

The MSE is

$MSE(\mathbf{p}, \mathbf{w}) = ||(\mathbf{w} \circ \mathbf{p})^{\top} \mathbf{A}_x \mathbf{h} - x_+^{\star}||_2^2 + \mathbf{h}^{\top} \mathbf{A}_x^{\top} \mathbf{\Sigma}_+ \mathbf{A}_x \mathbf{h}$

- Here, $((\mathbf{w} \circ \mathbf{p})^{\mathsf{T}} \mathbf{A}_x \mathbf{h} x_+^{\star})^2$ is the bias for that node
- The term $\mathbf{h}^{\mathsf{T}} \mathbf{A}_x^{\mathsf{T}} \mathbf{\Sigma}_+ \mathbf{A}_x \mathbf{h}$ is the output variance
- We need to avoid solutions like $\mathbf{p} = \mathbf{1}_N$, $\mathbf{0}_N$ by using regularisers

Training

min. MSE_T(
$$\mathbf{p}, \mathbf{w}$$
) + $\sum_{t=1}^{|\mathcal{T}|} \left(\mu_p ||\mathbf{p} - \mathbf{b}_{t+}||_2^2 + \mu_w ||\mathbf{w} - \mathbf{a}_{t+}||_2^2 \right)$
subject to $\mathbf{p} \in [0, 1]^N, \mathbf{w} \in \mathcal{W}$

- Not always convex in **p**, convex in **w**
- We use alternating projected gradient descent

Algorithm 1 Alternating projected gradient descent for (8).

- 1: Input: Graph \mathcal{G} , training set \mathcal{T} , graph signal \mathbf{x} , adjacency matrix **A**, number of iterations K, cost C, learning rates λ_p, λ_w . 2: **Initialization**: $\mathbf{p} = \mathbf{p}^0$, $\mathbf{w} = \mathbf{w}^0$ randomly, k = 0.
- 3: for $k \leq K$ do

4: **p** gradient:
$$\tilde{\mathbf{p}}^{k+1} = \mathbf{p}^k - \lambda_p \nabla_{\mathbf{p}} C(\mathbf{p}^k, \mathbf{w}^k);$$

5: Projection:
$$\mathbf{p}^{k+1} = \prod_{[0,1]^N} (\tilde{\mathbf{p}}^{k+1});$$

6: w gradient:
$$\mathbf{w}^{\kappa+1} = \mathbf{w}^{\kappa} - \lambda_w \nabla_w C(\mathbf{p}^{\kappa+1}, \mathbf{w}^{\kappa});$$

7: Projection:
$$\mathbf{w}^{\kappa+1} = \prod_{\mathcal{W}} (\tilde{\mathbf{w}}^{\kappa+1})$$

8: end for

Convex in **p** when
$$\mu_p \ge w_{h_{i \in \{1,...,N\}}}^2 ([\mathbf{A}_x \mathbf{h}]_i)^2 - ||\mathbf{w} \circ \mathbf{A}_x \mathbf{h}||_2^2$$

FUDelft

Numerical Results: Synthetic Graphs

- Erdos-Rényi and Barabasi-Albert, each of of 100 nodes
- Generate band-limited graph signal
- Generate \mathcal{T} with corresponding \mathbf{p} , \mathbf{w} pair
- Use as filter the simple shift operator to generate x_+ at each node
- Evaluate MSE over 100 such realisations for each node
- Compare with uniformly random and preferential attachment

Numerical Results: Convergence

Training with learning rates 10^{-5}

Ensuring marginal convexity not a good idea.

Numerical : MSE at incoming node

	Erdős-Rényi			Barabasi-Albert		
	Prop.	Pref.	Rand.	Prop.	Pref.	Rand.
MSE	0.03	0.06	0.06	0.05	0.1	0.08
Std.	0.003	0.003	0.003	0.006	0.006	0.006

- Proposed outperforms rest, shows importance of task-data-topology coupling
- We also train separately for each variable , given the other
- Training only over **w** performs better because of convexity in it

	p,w	only \mathbf{p}	only \mathbf{w}	p,w	only \mathbf{p}	only \mathbf{w}
MSE	0.03	0.07	0.039	0.05	0.11	0.05
Std.	0.003	0.003	0.003	0.006	0.005	0.006

Numerical Results: Item cold start collaborative filtering

Movielens 100K: 943 users, 1152 Items

	User 1	User 2	User 3
Item 1	1	2	3
Item 2	4	5	1
Item I	4	3	2

Item 1 Item 2 Item 3 Item 3 Item 4 Item 7 Item 5 Item 6

Nearest neighbour Graph for one user

We predict ratings for new items for each user graph

TUDelft

Numerical Results: Violin plots

Fig. 2. Mean absolute error (MAE) violin plots for different methods and different rating densities. (Left) low ratings - proposed does best (0.75 ± 0.24) , followed by mean (0.81 ± 0.24) ; (Centre) medium ratings - proposed and mean (0.79 ± 0.16) are tied; (Right) high ratings - mean does best (0.79 ± 0.15) , followed by proposed (0.81 ± 0.17) .

We do best in predicting ratings for new items in data scarcity settings

Does better than other attachments.

Shows advantage of personalised recommendations.

Conclusion

- Data, topology and task-driven attachment model for incoming nodes without prior information
- Parameterised by attachment probabilities and edge-weights, obtained by alternating projected gradient descent
- Outperforms stochastic and purely data-driven attachment

Future Work

- Process a sequence of incoming nodes without repeated re-training.
- Processing data on both the existing graph and the incoming node.

Thanks

