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Motivation
Statistical graphical models are fundamental tools for representing interrelationships
between variables and have found applications in many fields of science and technol-
ogy. A recurrent problem associated with them is determining whether two variables
are correlated when conditioned to a third one, called confounder. This task is usually
affected by the curse of dimensionality [1]: improvements in data acquisition tech-
niques have brought a much faster increase in their dimensionality than the speed at
which samples are available. Not only does this phenomenon cause an unbearable
rise in computational complexity of classical methods, but it also violates many of
their statistical assumptions, making them perform poorly.

This issue motivates the development of detection methods for conditional correlation
that are robust to high-dimensional/small-sample regimes.

Problem statement

Preliminary definitions

• U and V are generic sources and can represent sources X and Y indistinctly.
• Z is the potential confounder.

Average conditional cross-covariance matrix

CUV |Z ≜ EZ

[
CU,V |Z=z

]
=

∫
RNz

CUV |Z=zdFZ(z) (1)

Sources

Samples

The problem studied is the detection of correlation between X and Y conditioned to
Z. Its related binary hypothesis test can be defined as:

H0 :CXY |Z = 0
H1 :CXY |Z ̸= 0

}
. (2)

Tests for correlation
Consider the Likelihood Ratio Test (LRT) associated with the previous problem:

maxCWW |Z f(W|CWW |Z)

maxCXX|Z f(X|CXX|Z)maxCY Y |Z f(Y|CY Y |Z)

H1

≷
H0

λ, W ≜

[
X
Y

]
. (3)

Most approaches for solving it involve determinants or inverses [2], [3], which might
become computationally problematic. An alternative test for correlation that avoids
these issues is the RV coefficient:

TRV(X,Y|Z) ≜
∥ĈXY |Z∥2F

∥ĈXX|Z∥F∥ĈY Y |Z∥F
, TRV ↓⇒ H0. (4)

If data is Gaussian, the matrices involved can be obtained from Schur complements:

ĈUV |Z ≜ ĈUV − ĈUZĈ
−1
ZZĈZV . (5)

A matrix inversion is involved, bringing the same computational problems. We need
to find an alternative that avoids such issues and the Gaussianity assumption.
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U-Statistics test for conditional correlation

Covariance estimation using U-Statistics

ĈUV =
2

L(L− 1)

L−1∑
i=1

L∑
j=i+1

ůi,jv̊
T
i,j, ůi,j ≜

ui −uj√
2

, v̊i,j ≜
vi − vj√

2
(6)

Working with pairs provides an intrinsic redun-
dancy. By discarding the non-independent
ones, we can obtain an incomplete U-
Covariance matrix with our desired degree of
accuracy and reduced complexity. i.i.d. pairs

samples

Incomplete U-Covariance Matrix

Ĉ′
UV =

1
⌊L/2⌋

⌊L/2⌋∑
i=1

ůi,i+⌊L/2⌋v̊
T
i,i+⌊L/2⌋, Unused pairs: ∆L =

L(L− 1)
2

−
⌊
L

2

⌋
(7)

Weighted U-Statistics for conditional uncorrelatedness

Virtual random
variables:

Um ∼ U, Vm ∼ V, Zm ∼ Z → independent for different m = 1, 2
Ů ≜ U1−U2√

2
→ ůi,j, V̊ ≜ V1−V2√

2
→ v̊i,j, Z̊ ≜ Z1−Z2√

2
→ z̊i,j

It is known that CUV ≡ C
Ů V̊

[4], so the average conditional covariance matrix ex-
pression (1) can be rewritten with it. This allows to obtain an equivalent formulation:

CUV |Z =

∫
RNz

C
Ů V̊ |Z=zdFZ(z) =

∫∫
RNz×Nz

C
Ů V̊ |Z̊(Z1,Z2)=0

dFZ1,Z2
(z1,z2) = C

Ů V̊ |Z̊=0 . (8)

Since Pr{Z̊ = 0} = 0 for continuous variables, we relax this criterion by using the
pairs of samples such that 0 ≤ ∥Z̊∥ ≤ ϵ′. The proposed estimator of conditional
covariance can then be computed as:

C̆UV |Z ≜

∑L−1
i=1

∑L
j=i+1 ůi,jv̊T

i,jIϵ(∥zi − zj∥)∑L−1
i=1

∑L
j=i+1 Iϵ(∥zi − zj∥)

, Iϵ(λ) ≜

{
1, 0 ≤ λ ≤ ϵ
0, otherwise

. (9)

Order statistics

Calibrating ϵ might be very sensitive to the specific data. Motivated by the previously
mentioned redundancy, we present an alternative pair selection method.

For a given ϵ, only the Lp ∈ [1, L(L− 1)/2] data pairs corresponding to the smallest
norms of z̊i,j will be used in the estimation. For that reason it is very convenient to sort
the Lp smallest values of ∥̊zi,j∥ in ascending order in z̊sort. Function q(l) → (i(l), j(l))
returns the pair of indices from z samples that correspond to entry l of z̊sort.

∥̊z1,2∥
∥̊z1,3∥

...
∥̊zL−1,L∥

 sort−−−→ z̊sort ≜


∥̊zi(1),j(1)∥ (min)

...
∥̊zi(l),j(l)∥

...
∥̊zi(Lp),j(Lp)∥

 q(l)
−−−→


(i(1), j(1))

...
(i(l), j(l))

...
(i(Lp), j(Lp))

 . (10)

C̆UV |Z =
1
2Lp

Lp∑
l=1

(ui(l) −uj(l))(vi(l) − vj(l))
T

ww� (11)

T̆RV(X,Y|Z) =
∥C̆XY |Z∥2F

∥C̆XX|Z∥F∥C̆Y Y |Z∥F

Numerical results

Test settings

• Nº of averaged tests (M ): 500
• Techniques:

– Weighted U-Stats. Method (WUSM)
– Schur Complement Method (SCM)

• Mean: E[X ] = E[Y ] = E[Zn] = 0

• Power: E[X2] = E[Y 2] = E[Z2
n] = 1

• RV Coefficient (TRV):
– TRV (X, Y ) > 0.2
– TRV (X, Y |Z) ≈ 0

• Data model: Gaussian Copula

Estimation

Mean Squared Error : MSE(T̆RV) ≜ var(T̆RV) + bias2(T̆RV)
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Future research

Design
aspects

• Alternative criteria for sorting (different norms).
• Soft indicator functions and data-driven weighting.

Applications
• Integration of information theoretic methods: moving from

correlation to dependence (characteristic function map-
ping [5]).
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