EEE ICASSP 2022

SkiM: Skipping Memory LSTM for Low-latency Real-time Continuous Speech Separation

Highlights

- Real-time continuous speech separation
- 17.1 dB SDR improvement
- Computational cost is reduced by 75%
- Latency less than 1 ms on low-power device

Low-latency and Real-time Processing

- Time-domain model
 - Smaller encoder stride
- More frames of feature
- Graph-PIT criterion
 - Meeting-level training
 - Long duration

Experimental Details

- Dataset:
 - A simulated meeting style dataset derived from LibriSpeech
 - Each session lasts for ~90 seconds
 - 3-5 active speakers in each session
 - Overlap ratio is between 50% to 80%

The Proposed Skipping Memory (SkiM) LSTM Model

Super-long

sequence

> 100k frame

per minute)

Segmentation-LSTM Local processing Block L Sequence -> State vector Memory-LSTM Block 2 • Process state vectors Global information sync Compared to DPRNN More efficient long sequence modeling

• Less computational cost

Block 1

Input feature

Experimental Results

Table 1: The overall STOI, SDR improvement (SDRi) and high-overlap SDR improvement (SDRi50) comparison on different models.

Model	Causal	Stride Size	Model size (M)	MACs (G/s)	SDRi (dB)	SDRi50 (dB)
TCN	no	20	3.4	2.7	13.5	5.9
DPRNN	no	20	9.6	14.6	19.2	9.0
	yes	20	4.9	7.5	16.6	7.6
	yes	10	4.9	14.7	16.8	7.7
SkiM	no	20	15.9	3.8	18.7	9.2
	yes	20	6.0	2.0	17.3	8.0
	yes	10	6.0	3.9	17.1	7.8

Table 2: Real-time factor (RTF) and latency evaluation for causal models. (Tested out with a single-core Intel Ivy Bridge CPU @ 1.9GHz)

Model	Stride size	Ideal latency	MACs (G/s)	RTF	Latency
DPRNN	20	1.25 ms	7.5	0.98	2.47 ms
	10	0.625 ms	14.7	1.98	null
SkiM	20	1.25 ms	2.0	0.23	1.54 ms
	10	0.625 ms	3.9	0.46	0.92 ms

¹Chenda Li, ²Weigin Wang,

²Lei Yang, ¹Yanmin Qian

¹ X-LANCE Lab, Shanghai Jiao Tong University ² Samsung Research China - Beijing (SRC-B)

hidden (h) and cell (c) states with zeros (0) or unprocessed local states (id)

Model	Mem- LSTM	Model size (M)	MACs (G/s)	SDRi (dB)	SDRi50 (dB)
SkiM	h, c	15.9	3.8	18.7	9.2
	h, 0	10.4	3.8	17.8	8.6
	0, c	10.4	3.8	15.6	7.8
	0, 0	4.9	3.8	12.5	7.1
	id, id	4.9	3.8	12.5	7.1

Table 4: Comparison with other models on WSJ0-2mix Benchmark. (*):MACs per second estimated by us.

Model	Model size (M)	MACs (G/s)	SI-SNRi	SDRi
DPCL++ [28]	13.6	-	10.8	-
ADANet [29]	9.1	-	10.4	10.8
WA-MISI-5 [5]	32.9	-	12.6	13.1
Conv-TasNet-gLN [8]	5.1	3.2*	15.3	15.6
Deep CASA [30]	12.8	-	17.7	18.0
FurcaNeXt [31]	51.4	-	-	18.4
DPRNN-KS2 [10]	2.6	38.9*	18.8	19.0
DPRNN-KS8 [10]	2.6	9.8*	17.0	17.3
SepFormer [11]	26.0	32.1*	20.4	20.5
SkiM-KS2	5.9	19.7	18.3	18.7
SkiM-KS8	5.9	4.9	17.4	17.8

4114

SJTU Cross Media Language Intelligence Lab 上海交通大學院媒科派言智财實族空

SANSUNG

Table 3: Ablation studies for Mem-LSTMs in SkiM. Replace the global-synchronized