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Motivation

e Federated Learning (FL): train models on device, aggregate to central model [17].
e Automatic Speech Recognition (ASR) models are costly to train.
e Must reduce transport and memory costs.
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Image source: https://ai.googleblog.com/2017/04/federated-learning-collaborative.html.
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Motivation

e In a neural model, certain layers are more important than others [11].
o Does this apply to Conformer models, the SOTA for ASR?
o Can we determine which layers are more important (critical), and which
are less important (ambient)?
e If so, we could:
o  Only train most important layers.

o Target compression techniques to least important layers.
m Federated Dropout (FD)— drop more in unimportant layers.
m Transport compression — allocate bit budget by each layer's
importance.
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Do layers in ASR models also vary in importance?
Can we reliably rank layers by importance?
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Experiment 1

e Tested stability of these properties and variance across model sizes.
e Data and model details:

o Librispeech corpus [20].

o Three different model sizes of non-streaming Conformer [3].

Model Conf Params Conf Layers Total Params

ConformerS 8.1M 16 x 0.5M 10.3M
ConformerM 25.4M 16 x 1.6M 30.7M
ConformerL 107.5M 17 x 6.3M 118.6M
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Experiment 2

e Tested application in practical dataset on state-of-the-art model.

e Data and model details:

o Multi-domain dataset (MD), with and without Short-form domain (SF)

held out. [21]
o Streaming Conformer model. [4]

Dataset Hours
Multi-domain (MD) 400k
Short-form domain (SF) 27k

Short-form held out (MD-SF) 373k
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Methodology

e Train models to convergence.
e For each layer in the encoder:
o Reset the layer weights to initial values (re-initialization) or random
values (re-randomization).

o Evaluate against test set.
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Model Size

e Columns show WER when each layer is reset.
o Certain layers can be reset without penalty: "ambient layers".
o Others have catastrophic impact: “critical layers".
e The larger the model, the more robust to having entire layers reset.
e Re-initialization vs re-randomization similar.
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Batch Normalization vs Group Normalization

e Batch Normalization interferes with formation of ambient layers, so was left
out of experiments in prior work [11].
e We find that Group Normalization [18] yields ambient layers.
o Also ideal for Federated Learning [23].

ConformerL 75

Qo
BatchNorm r | B | >
GroupNorm . . =0 g

0 2 4 6 8 10 12 14 16 )5

GOOQ'G Confidential + Proprietary



ConformerL

1k 100
Stablllty —— WER Mean
WER Range
: : 50
e Reran the same experiment 5 times,
including training from scratch.
e Larger models are more stable across ConformerM
runs. 100
2
& s0
=
ConformerS
100
50

0 2 - 6 8 10 12 14 16

Google HaYEr



Takeaways

e We can rank layers of ASR model by importance.

e Group Normalization can be used.

e "Ambient" layers can be reset after training without much consequence.
o Position of ambient layers is somewhat stable.
o Larger models yield more ambient layers that are more stable.
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Can we rank layers from in-training metrics
(without offline ablation studies)?
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Numerical Signatures

e Hypothesis:
o Weights that change least during training may be least damaging to reset.
o These may correspond to ambient layers.
e Methodology:
o Use Frobenius norm to measure change away from initial value at a fixed
time, t.
o Compare normalized change for each module, m, across layers, /.
o Plot onto [0,1] to show relative importance of a layer wrt a module.

|Wm’l(t) _ Wm,l(O)IF
max [Wm L (8) — W' (0))
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Numerical Signatures
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Numerical Signatures
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Takeaways

e Attention-layer weight matrices show strong per-layer signature:
o emerges during training.

o stable under different seeds.
o less pronounced for smaller models.

o shares some features with WER in re-init and re-rand experiments.
e Suggests per-module ablation studies.
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Can we use these findings to reduce
model training costs in FL?
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Applications: Federated Dropout

(i) Original network, with a,, b,, and ¢, marked for dropout
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Image source: [19] "Expanding the Reach of Federated Learning by Reducing Client Resource Requirements’, Caldas et. al.

Goog|€ Confidential + Proprietary



Applications: Federated Dropout

Google

Setup:
o Fine-tuning on a held-out domain (SF).
o Apply 50% Federated Dropout (FD) to n most critical or ambient layers.
Comparing settings with same number

of parameters trained: Dropout Params Dropped WER
o Amb-3 vs Crit-4: 22% WER difference
Comparing dropping ambient layers to flat Amb:2;50% I 6.3
Crit-3 50% 9% 7.0
dropout across the model:
o More dropout, same WER. Amb:-3 30% 10% 6.5
Crit-4 50% 10% 7.3
Flat 20% 11% 6.6
Amb-4 50% 12% 6.6
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Conclusion

Ambient properties exists in ASR Conformer.

e Larger models show a higher number of stable ambient layers.
Attention modules have interesting geometric signature and show some of
the per-layer signatures of ambient-ness.

e Up to 22% relative WER improvement when targeting ambient layers for FD,
with same number of parameters trained.
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