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Motivation

● Federated Learning (FL): train models on device, aggregate to central model [17].
● Automatic Speech Recognition (ASR) models are costly to train.
● Must reduce transport and memory costs.

Image source: https://ai.googleblog.com/2017/04/federated-learning-collaborative.html.

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html


Confidential + Proprietary

● In a neural model, certain layers are more important than others [11].
○ Does this apply to Conformer models, the SOTA for ASR?
○ Can we determine which layers are more important (critical), and which 

are less important (ambient)?
● If so, we could:

○ Only train most important layers.
○ Target compression techniques to least important layers.

■ Federated Dropout (FD)→ drop more in unimportant layers.
■ Transport compression → allocate bit budget by each layer's 

importance.

Motivation
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Do layers in ASR models also vary in importance?
Can we reliably rank layers by importance?
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● Tested stability of these properties and variance across model sizes.
● Data and model details:

○ Librispeech corpus [20].
○ Three different model sizes of non-streaming Conformer [3].

Experiment 1
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● Tested application in practical dataset on state-of-the-art model.
● Data and model details:

○ Multi-domain dataset (MD), with and without Short-form domain (SF) 
held out. [21]

○ Streaming Conformer model. [4]

Experiment 2
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● Train models to convergence.
● For each layer in the encoder:

○ Reset the layer weights to initial values (re-initialization) or random 
values (re-randomization).

○ Evaluate against test set.

Methodology
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● Columns show WER when each layer is reset.
○ Certain layers can be reset without penalty: "ambient layers".
○ Others have catastrophic impact: "critical layers".

● The larger the model, the more robust to having entire layers reset.
● Re-initialization vs re-randomization similar.

Model Size
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● Batch Normalization interferes with formation of ambient layers, so was left 
out of experiments in prior work [11].

● We find that Group Normalization [18] yields ambient layers.
○ Also ideal for Federated Learning [23].

Batch Normalization vs Group Normalization
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● Reran the same experiment 5 times, 
including training from scratch.

● Larger models are more stable across 
runs.

Stability
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● We can rank layers of ASR model by importance.
● Group Normalization can be used.
● "Ambient" layers can be reset after training without much consequence. 

○ Position of ambient layers is somewhat stable.
○ Larger models yield more ambient layers that are more stable.

Takeaways
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Can we rank layers from in-training metrics 
(without offline ablation studies)?
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Numerical Signatures

● Hypothesis: 
○ Weights that change least during training may be least damaging to reset.
○ These may correspond to ambient layers.

● Methodology: 
○ Use Frobenius norm to measure change away from initial value at a fixed 

time, t.
○ Compare normalized change for each module, m, across layers, l. 
○ Plot onto [0,1] to show relative importance of a layer wrt a module.
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Non-streaming Conformer
(LibriSpeech, t=70k)

● upper layers experience 
more updates for all 
attention-related weights

● convolutional weights 
roughly equidistributed 
over layers

↑ more critical

attention 
weights

conv’l weights

Numerical Signatures
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Streaming Conformer
(MD – SF,  t=300k)

● strong variation in two 
attention weights

● dip at layer 4, the least 
critical layer

↑ more critical

attention
post+value

least
critical

Numerical Signatures
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● Attention-layer weight matrices show strong per-layer signature:
○ emerges during training.
○ stable under different seeds.
○ less pronounced for smaller models.
○ shares some features with WER in re-init and re-rand experiments.

● Suggests per-module ablation studies.

Takeaways
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Can we use these findings to reduce 
model training costs in FL?
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Applications: Federated Dropout

Image source: [19] "Expanding the Reach of Federated Learning by Reducing Client Resource Requirements", Caldas et. al.
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● Setup: 
○ Fine-tuning on a held-out domain (SF).
○ Apply 50% Federated Dropout (FD) to n most critical or ambient layers.

● Comparing settings with same number 
of parameters trained:
○ Amb-2 vs Crit-3: 7% WER difference.
○ Amb-3 vs Crit-4: 22% WER difference

● Comparing dropping ambient layers to flat
dropout across the model:
○ More dropout, same WER.

Applications: Federated Dropout
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● Ambient properties exists in ASR Conformer.
● Larger models show a higher number of stable ambient layers.
● Attention modules have interesting geometric signature and show some of 

the per-layer signatures of ambient-ness.
● Up to 22% relative WER improvement when targeting ambient layers for FD, 

with same number of parameters trained.

Conclusion
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