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Motivation & Background



Motivation

e In distributed frameworks such as Federated Learning [1]
o Model training involves transmitting gradients/updates over a network
o Ensure user’s data remains on-device

[1] Federated Learning: Collaborative Machine Learning without Centralized Training Data [Google Al Blog]



https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

Motivation

e Indistributed frameworks such as Federated Learning [1]
o Model training involves transmitting gradients/updates over a network
o Ensure user’s data remains on-device

e But, privacy can still be leaked from gradients!
o itis possible to obtain the private training data from the
publicly shared gradients [2]

[1] Federated Learning: Collaborative Machine Learning without Centralized Training Data [Google Al Blog]
[2] Deep Leakage from Gradients [Zhu et. al., 2019]



https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://arxiv.org/abs/1906.08935

Prior Work: Gradients Matching [2]
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[2] Deep Leakage from Gradients [Zhu et. al., 2019]



https://arxiv.org/abs/1906.08935

Gradients Matching for Images
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Contributions

e First work to study information leakage from gradients in ASR training
o Reveal speaker identity (SI) of an utterance from gradient
o Propose Hessian-Free Gradients Matching
m Input reconstruction without 2nd derivatives of the loss
e Demonstrate success using DeepSpeech training on LibriSpeech
o Reveal Sl with 34% top-1accuracy (51% top-5 accuracy)
e Demonstrate that dropout can mitigate the success of our method
e Demonstrate our method in two complex regimes



Challenges Applying GM to Speech



Just Apply Gradients Matching to Speech?
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Many Differences!
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Revisiting Gradients Matching

Standard Optimization: Find model
parameters 0

- Loss: L(x,0)

- Objective: min L(x,0)

- Use first-order methods, e.g., SGD
- Uses VyL(x,0)




Revisiting Gradients Matching

Standard Optimization: Find model Gradient Matching: Find model input x

parameters 0 ,
- Gradient Loss:

- Loss: L(z,0) f () = [VoL(z) = VoL(z)|;

- Objective: mein L(x,0) - Vo L(z') : Client update (constant)

- Use first-order methods, e.g., SGD
- Uses VyL(x,0) - Objective: n;inf(af;)




Revisiting Gradients Matching
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Gradient Matching: Find model input x

- Gradient Loss:
f(x) = IVoL(x) = VoL(@')],
- VgL (z') : Client update (constant)

- Objective: min f(x)
- For using first-order methods, we need V. f(z)
- f(x)requires VyL(x)

- Thus, V,f(z) requires V,.(VyL(x))




Gradientless Descent (see e.g., [6])

Consider a random unit vector in the param space

Does the loss reduce along this vector?

e [f yes, take a step in that direction
e If no, do nothing

This coarse method turns out to be quite effective
e Usedin, e.g., Reinforcement Learning
Comes with convergence analysis ([6])

In our expts, loss reduces for ~40% of “random
vectors”

[6] Gradientless Descent: High-Dimensional Zeroth-Order Optimization [Golovin et al., 2020]
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https://arxiv.org/pdf/1911.06317.pdf
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A two-phase method to reveal speaker id:
1. Using Hessian-Free Gradients Matching (HFGM, based on Gradientless Descent)
to reconstruct the input speech features.
2. Use a Speaker Id model to identify the speaker.



Experiments



Setup

e Model Architecture:
o DeepSpeech: For the attack target
o Deep Speaker [7]: To reveal speaker id
e Dataset:
o LibriSpeech ASR corpus:
m 300k utterances, 2.5k speakers
e For training Deep Speaker
o use 5 utts for each speaker
e Forreconstruction:
o randomly sample 600 utts (not seen by Deep Speaker)

[7] Deep Speaker: an End-to-End Neural Speaker Embedding System [Li et. al., 2017]



https://www.researchgate.net/profile/Zhenyao_Zhu/publication/316736728_Deep_Speaker_an_End-to-End_Neural_Speaker_Embedding_System/links/5923cc6baca27295a8aa75ae/Deep-Speaker-an-End-to-End-Neural-Speaker-Embedding-System.pdf

Setup

e Phase 1 (Reconstruction):
o Use untrained DeepSpeech model
o Match only the last layer (~60k parameters) for each gradient
o Sample 128 unit vectors per iteration of HFGM
e Phase 2 (Reveal Speaker Id):
o Train Deep Speaker, obtain embeddings for each speaker
o |dentify the speaker of reconstructed utterance
e Evaluation Metrics:
o Top-1(Top-5) accuracy (%)
o MAE, MRR (in the paper)



Example of Reconstruction

Original utterance
e “you can’t stay here”
e 59 frames, 1.2s of audio

Convergence
e Stepstoreach 0.05 MAE: ~20k
e Time:~3h

4

Original Reconstructed
D) D)

(you can't stay here)



Speaker Id: Overall Results

e For reconstructed utterances:
o Top-1: 34%, Top-5: 51%



Speaker Id: Overall Results

e Forreconstructed utterances:
o Top-1: 34%, Top-5: 51%

e For original utterances (upper bound)
o Top-1:42%, Top-5:57%

Speaker id from reconstructed is close to original




Defense Methods: Training with Dropout

e Apply dropout to all layers except the projection layer (d: dropout rate)

d Tor-1 Topr-5
0 34.0 51.0

0.1 0.8 2.0
0.2 0.0 0.5
0.3 0.1 0.3

e Dropout prevents the attacker from matching gradients



Defense Methods: Training with Dropout

e Apply dropout to all layers except the projection layer (d: dropout rate)

WER WER
d Topr-1 TopP-5 |(CLEAN) (OTHER)
0 34.0 51.0 10.5 28.4
0.1 0.8 2.0 11.9 28.2
0.2 0.0 0.5 9.2 25.6
0.3 0.1 0.3 9.5 27.1

e Dropout prevents the attacker from matching gradients
e Does not hurt utility



Visualization of Speech Features

Original Reconstructed

Transcript:
“where is my husband”

Reconstructed utt looks
similar to the original

Dropout 0.1

e

Defense methods significantly
degrade signal quality



Additional Experiments: Average Gradients from Batches

e Reveal speaker identity from the batch of size 2/4/8

Topr-1 TopP-5

ORIGINAL 42.0 57.0
BATCH SIZE1 40.0 55.0

BATCH SIZE2 37.0 54.0
BATCH SIZE 4 19.0 31.0
BATCH SIZE & 5.0 11.0

(Results with 200 utts)



Additional Experiments: Multi-Step Updates from a Sample

e Reveal speaker identity from 2-step and 8-step model update

Topr-1 TopPr-5
ORIGINAL 42.0 57.0
1-STEP 40.0 55.0
2-STEP 26.5 39.5
8-STEP 24.5 39.0

(Results with 200 utts)



Summary

e First work to study information leakage from gradients in ASR training
o Reveal speaker identity (SI) of an utterance from gradient
o Proposed Hessian-Free Gradients Matching
e Demonstrated success using DeepSpeech training on LibriSpeech
e Demonstrated that dropout can mitigate the success of our method
e Demonstrated our method in two complex regimes



