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Sparsity

Nowadays we deal with high dimensional data. Fortunately, it can often be represented as
sparse vectors.

Can there be structure within sparsity?
e Sparsity appears as clusters/blocks

e Non-zero entries form a rooted sub-tree

Figure: Hubble image (cropped)[indyk, 2015]



Weighted Graph Model

Weighted e Graph G, total nodes d, sparsity s, no. of connected
Graph Model components g, weight budget B
[Hegde et e Set of subgraphs with s nodes that are clustered in g

al, 2015] connected components with total edge weights < B

Valid Supports Invalid Support

Figure:d:6,s:34,g:2,B:3



Weighted Graph Model

e Weight degree p(Vv): Largest
number of adjacent nodes of v
connected by edges with the
same weight

1
e Weight-degree of G, p is the !
maximum weight-degree
across v 2
p(w) =2

Figure: Weight degree of graphis p = 3



Weighted Graph Model: Examples

Many sparsity models can be described using Weighted Graph Model.

Figure: Tree sparsity with
d=15s=7,g=1,B=6,p=3 Figure: Block sparsity with
d=25,s=10,g=2,B=8,p=2



Problem Statement

Compressed e Generative model:y = f(Xp* + e) where
Sensing y € R™, X € R™*4 B* ¢ R4 and noise e € R™

e Infer a high dimensional sparse signal 3* from low
dimensional noisy observations (X, y)

e How many observations are necessary?

Observations
B —— (X, y =f(XB* +e)) —

=)




Our Results: Standard Compressed Sensing

Ja (G, s, g, B)—WGM for standard Compressed Sensing:y = X[3* + e such that

Noiseless Case

Noisy Case

o if
. d
n e o((s—g)(logp(G) + log )+ glog—+ (s —g)log +slog?2),
s—g g s—g
e theninfs supp P g unier) (B* # B) > i
(X,y)~D(p*)™
o if
. d
neo((s—g)(logp(G) + log )+ glog—+ (s—g)log + slog?2),

s—9 9 s—9

e then mfa SUPDHED B*~Unif(F) (HB* — BH > CHe”) 2 T]b
(Xy)~D(p™)™
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Our Results: One-bit Compressed Sensing

Ja (G, s, g, B)J—WGM for One-bit Compressed Sensing: y = sign(X[3* + e) such that

Exact Recovery

Approximate
Recovery

o if
B d g
n € o((s —g)(logp(G) + log )+ glog—+ (s—g)log + slog?2),
s—9 ) $—¢
e then infB supp P g unif(r) (B* #B) = %
(X y)~D(p*)"
o f
B
neo((s—g)(logp(GH—logS_ )+ glog—+ (s —g)log + slog2)

e theninfg supp IP B*,\Umf ()| -2 IIB T B || =€) > %
(Xy)~ ((3*)
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Proof Outline

e Construction of a restricted ensemble

e Constructing Weighted Graph Model
e Choosing coefficients of 3

e Establishing bounds
e Lower bound on number of possible signals from restricted ensemble
e Upper bound mutual information between signal and observation

e Using Fano's inequality



Optimality of the Results

‘ Standard Compressed Sensing

Sparsity Structure ‘Our Lower Bound Upper Bound
Weighted Graph Model Q(s(logp( ) )—i—glogg) O(s(logp(G)%) +g|og%)
Tree Structured Q(s) O(s)
d

Block Structured Q( +g Iog ) O(s +glog <)
Regular s-sparsity Qs Iog ) O(slog %)

‘ One-bit Compressed Sensing
Sparsity Structure ‘Our Lower Bound Upper Bound

Weighted Graph Model | Q(s(log p(G)%) +glog g) NA

Tree Structured Q(s) NA
Block Structured Q(s+g Iog ) NA
Regular s-sparsity Qs Iog ) O(slog %)







