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Sparsity

Nowadays we deal with high dimensional data. Fortunately, it can often be represented as
sparse vectors.

Can there be structure within sparsity?
• Sparsity appears as clusters/blocks
• Non-zero entries form a rooted sub-tree

Figure: Hubble image (cropped)[Indyk, 2015]
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Weighted Graph Model

Weighted
Graph Model

[Hegde et
al., 2015]

• GraphG, total nodes d, sparsity s, no. of connected
components g, weight budget B

• Set of subgraphs with s nodes that are clustered in g

connected components with total edge weights⩽ B

Figure: d = 6, s = 4,g = 2,B = 33



Weighted Graph Model

• Weight degree ρ(v): Largest
number of adjacent nodes of v
connected by edges with the
same weight

• Weight-degree ofG, ρ is the
maximum weight-degree
across v

Figure: Weight degree of graph is ρ = 3
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Weighted Graph Model: Examples

Many sparsity models can be described using Weighted Graph Model.

Figure: Tree sparsity with
d = 15, s = 7,g = 1,B = 6, ρ = 3 Figure: Block sparsity with

d = 25, s = 10,g = 2,B = 8, ρ = 2

5



Problem Statement

Compressed
Sensing

• Generative model: y = f(Xβ∗ + e) where
y ∈ Rn,X ∈ Rn×d,β∗ ∈ Rd and noise e ∈ Rn

• Infer a high dimensional sparse signal β∗ from low
dimensional noisy observations (X,y)

• How many observations are necessary?

β∗
Observations

(X,y = f(Xβ∗ + e)) β̂
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Our Results: Standard Compressed Sensing
∃ a (G, s,g,B)−WGM for Standard Compressed Sensing: y = Xβ∗ + e such that

Noiseless Case • if

n ∈ õ((s− g)(log ρ(G) + log B

s− g
) + g log d

g
+ (s− g) log g

s− g
+ s log 2),

• then inf
β̂

supD P β∗∼Unif(F)
(X,y)∼D(β∗)n

(β∗ ̸= β̂) ⩾ 1
2

Noisy Case • if

n ∈ õ((s− g)(log ρ(G) + log B

s− g
) + g log d

g
+ (s− g) log g

s− g
+ s log 2),

• then inf
β̂

supD P β∗∼Unif(F)
(X,y)∼D(β∗)n

(∥β∗ − β̂∥ ⩾ C∥e∥) ⩾ 1
10
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Our Results: One-bit Compressed Sensing
∃ a (G, s,g,B)−WGM for One-bit Compressed Sensing: y = sign(Xβ∗ + e) such that

Exact Recovery • if

n ∈ o((s− g)(log ρ(G) + log B

s− g
) + g log d

g
+ (s− g) log g

s− g
+ s log 2),

• then inf
β̂

supD P β∗∼Unif(F)
(X,y)∼D(β∗)n

(β∗ ̸= β̂) ⩾ 1
2

Approximate
Recovery

• if

n ∈ o((s− g)(log ρ(G) + log B

s− g
) + g log d

g
+ (s− g) log g

s− g
+ s log 2),

• then inf
β̂

supD P β∗∼Unif(F)
(X,y)∼D(β∗)n

(∥ β∗

∥β∗∥ − β̂

∥β̂∥
∥ ⩾ ϵ) ⩾ 1

2
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Proof Outline

• Construction of a restricted ensemble
• Constructing Weighted Graph Model
• Choosing coefficients of β

• Establishing bounds
• Lower bound on number of possible signals from restricted ensemble
• Upper bound mutual information between signal and observation

• Using Fano’s inequality

9



Optimality of the Results

Standard Compressed Sensing

Sparsity Structure Our Lower Bound Upper Bound

Weighted Graph Model Ω̃(s(log ρ(G)B
s
) + g log d

g
) O(s(log ρ(G)B

s
) + g log d

g
)

Tree Structured Ω̃(s) O(s)

Block Structured Ω̃(s+ g log d
s
) O(s+ g log d

s
)

Regular s-sparsity Ω̃(s log d
s
) O(s log d

s
)

One-bit Compressed Sensing

Sparsity Structure Our Lower Bound Upper Bound

Weighted Graph Model Ω(s(log ρ(G)B
s
) + g log d

g
) NA

Tree Structured Ω(s) NA
Block Structured Ω(s+ g log d

s
) NA

Regular s-sparsity Ω(s log d
s
) O(s log d

s
)
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Thank You!
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