Provable Sample Complexity Guarantees for Learning of Continuous-Action Graphical Games with Nonparametric Utilities
 ICASSP 2022

Adarsh Barik, Dr. Jean Honorio

Purdue University

Graphical Games

Graphical Games

A representation of multiplayer game on a directed graph which captures and exploits locality or sparsity of direct influences.

- Example: Trading between European countries
- Sparse graph: trading strategy of a country depends only on in-neighbors
- Selfish players
- Problem: Learn the directed structure

Graphical Games

Graphical A representation of multiplayer game on a directed graph which

Games

 captures and exploits locality or sparsity of direct influences.- n players as vertices X_{1}, \cdots, X_{n}
- In-neighbors: $S_{i}=\{j \mid j \rightarrow i\}$, e.g., $S_{3}=\{1,5\}$
- Continuous action $x_{i} \in \mathbb{R}^{k}, x_{-i}$ is collection of actions of all the players but i
- Pairwise decomposable payoff $u_{i}=\sum_{j \in S_{i}} u_{i j}\left(x_{i}, x_{j}\right)$
- $u_{3}=u_{31}\left(x_{3}, x_{1}\right)+u_{35}\left(x_{3}, x_{5}\right)$

Nash Equilibria

Pure Strategy Nash Equilibria (PSNE)

A joint action $\mathrm{x}^{*} \in \prod_{i=1}^{n} \mathbb{R}^{k}$ where no player has any incentive to unilaterally deviate from the prescribed action $x_{i}^{*} \in \mathbb{R}^{k}$ given the joint action of its in-neighbors in the equilibrium.

$$
\mathrm{NE}=\left\{\mathbf{x}^{*} \mid x_{i}^{*} \in \arg \max _{x_{i} \in \mathbb{R}^{k}} u_{i}\left(x_{i}, x_{-i}^{*}\right), \forall i \in\{1 \cdots n\}\right\}
$$

We allow small deviation from PSNE!
€-PSNE

$$
\operatorname{NE}_{\epsilon}=\left\{\mathbf{x}^{*} \mid u_{i}\left(x_{i}^{*}, x_{-i}^{*}\right) \geqslant-\epsilon+\arg \max _{x_{i} \in \mathbb{R}^{k}} u_{i}\left(x_{i}, x_{-i}^{*}\right), \forall i \in\{1 \cdots n\}\right\}
$$

Handling Non-parametric Payoffs

- Recall $u_{i}=\sum_{j \in S_{i}} u_{i j}\left(x_{i}, x_{j}\right)$ but they are still non-parametric
- We write $u_{i j}\left(x_{i}, x_{j}\right)$ as a weighted sum of uniformly bounded orthonormal basis functions (such as Fourier basis)

$$
u_{i j}\left(x_{i}, x_{j}\right)=\sum_{k=0}^{\infty} \beta_{i j k}^{*} \psi_{k}\left(x_{i}, x_{j}\right)
$$

where $\beta_{i j k}^{*}=\left\langle u_{i j}, \psi_{k}\right\rangle$

Handling Non-parametric Payoffs

- Still an infinite series for $\beta_{i j k}^{*}$
- We can truncate as long as coefficients $\beta_{i j k}^{*}$ are convergent for $k \geqslant r+1$, e.g., Fourier basis
- We use $\bar{u}_{i}(x)=\sum_{j \in S_{i}} \bar{u}_{i j}\left(x_{i}, x_{j}\right)$ for estimation where $\bar{u}_{i j}=\sum_{k=0}^{r} \beta_{i j k}^{*} \psi_{k}\left(x_{i}, x_{j}\right)$

Problem Formulation

- Get N noisy black-box measurements
- Estimation problem

$$
\begin{aligned}
& \min _{\beta} \frac{1}{N} \sum_{x \in D}\left(\widetilde{u}_{i}(x)-\bar{u}_{i}(x)\right)^{2}+\lambda \sum_{j \neq i} \sum_{k=0}^{r}\left|\beta_{i j k}\right| \\
& \text { such that } \sum_{j \neq i} \sum_{k=0}^{r}\left|\beta_{i j k}\right| \leqslant C .
\end{aligned}
$$

- We show that if $\beta_{i j k} \neq 0$, then j is in-neighbor of i

Main Result

Our result

- Recovering Graphical Games
- Let $d=\max \left|S_{i}\right|$
- Estimation problem learns the exact structure of graphical game with high probability provided that:

$$
N \geqslant \Omega\left(r^{3} d^{3} \log (r n)\right)
$$

- The estimated game has $\widehat{\mathrm{NE}} \subseteq \mathrm{NE}_{\epsilon}$ and $\mathrm{NE} \subseteq \widehat{\mathrm{NE}}_{\epsilon}$

Use of primal-dual witness technique to construct a solution which is unique and recovers correct in-neighbors with bounded error!

Validation

Figure: Precision and recall with number of samples. N varies with $10^{C_{p}} \log (\mathrm{rn})$ where $\mathrm{r}=2$

Real World Application

- Potato trade data among European countries between 1973 - 2019
- Action: Production volume, Payoff: Trade price

Real World Application

- The influence of a country is measured by the numbers of its out-neighbors
- Observation: Countries in Eurozone(formed in 1999) have gained influence during 1996-2019

Thank You!

