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1. Motivation
• The Porcine Reproductive and Respiratory Syndrome (PRRS) is

arguably the most challenging and costly viral infectious disease in
the US swine industry [1].

• Usually, these data do not satisfy the granularity required for learn-
ing an advanced predictive model (e.g. diagnostic samples are only
taken once or twice per month per farm).

• However, using the real-world data, we can simulate epidemics to
produce fine-grained time series data to analyze it further with an
advanced novel prediction method based on a generative and varia-
tional inference model.

2. Time Series Data Simulation
• Based on the rich database of an extensive anonymous swine pro-

duction system located in the Midwest of the United States, we have
access to farm-level pig shipment data, and PRRSV testing results
[2].

• From 2006 to 2021, there have been over 260,000 movement records
to or from farms within this production system.

• For each movement entry, the data includes the source and destina-
tion information, the number of transported pigs, and the date of
the movement.

• Based on the farm-level shipment data we generate a farm-level
movement network for the entire production system. Furthermore,
the frequent PRRSV testing in each farm gives insight into how the
virus is transmitted, e.g., what is the virus’s transmission rate, incu-
bation time, etc. Using the SEIR model we can produce a pig-level
contact network, [3].
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(a) farm-level (b) pig-level
Contact Network. (a) The swine shipment network (directed graph).
The premises are displayed by a number-labeled node and edge weights
corresponds to the shipment rate. The between-premises shipment
rate network is showcased for 10% of nodes randomly selected among
over 300 existing nodes. (b) Top: Pig level network graph. Bottom:
State-transition diagram for a single node.

3. Farm Disease Propagation Prediction
• Our spatio-temporal data indicates the number of pigs categorized

within a particular stage, e.g., infected, recovered, etc., in every time
instance in each farm. We denote this data as the matrix X ∈RT ×D,
where T is the number of time points and D the number of spatial
locations, e.g., the number of farms.

• Building on previous work by [4], our assumption is that X can be
decomposed into a weighted summation of K ≪ D factors over time
as:

X ≈ [w1, · · · ,wT ]⊤[f1; · · · ;fK ] = W ⊤F, (1)

where fk ∈ RD is the kth spatial factor and wt ∈ RK is the weight
vector at time t.

• Our intuition for adopting this model for some pig-specific collected
measurements in D farm over T time points is that there are K ≪
D underlying factors using which we can approximate the overall
dynamics of the disease propagation in the data.

• We assume that the weights, W = {wt}T
t=1, are generated according

to a set of temporal lags, ℓ, through a deep probabilistic switch-
ing auto-regressive model. These weights are furthermore governed
by a Markovian chain of discrete latent states, S = {st}T

t=1 as fol-
lows: wt ∼ p(wt|wt−ℓ,st), st ∼ p(st|st−1). In addition, we assume
that spatial factors, F = {fk}K

k=1, are controlled by a shared low
dimensional latent variable, z, as follows: f1:K ∼ p(F |z), z ∼ p(z).

• We train the model using stochastic variational methods by approxi-
mating the posterior pθ(S,W,z,F |X) using a variational distribution
qϕ(S,W,z,F ), and by maximizing a lower bound (known as ELBO)
L(θ,ϕ) ≤ logpθ(X):

L(θ,ϕ) = Eqϕ(S,W,z,F )

[
log pθ(X,S,W,z,F )

qϕ(S,W,z,F )

]
(2)

= logpθ(X) − KL(qϕ(S,W,z,F ) ||pθ(S,W,z,F |X)).

By maximizing the bound with respect to the parameters θ, we learn
the generative distribution over datasets pθ(X), and by maximizing
the bound over the parameters ϕ, we do Bayesian inference by ap-
proximating the distribution qϕ(S,W,z,F ) ≃ pθ(S,W,z,F |X) over
latent variables for each data point.
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4. Experimental Results
• We used time series of epidemic progression from over 300 farms

simulated for 700 time points.
• We kept last 20% of the time series as the test set.
• We then performed a short-term prediction tasks by adopting a

rolling prediction scheme reported in [5].
• For short-term prediction, the next time point is predicted using the

generative model and spatial factors learned on the train set.
• We reported the test set normalized root-mean-square error

(NRMSE%), which is related to the expected negative test-set log-
likelihood for the case of Gaussian distributions, and it is used for
evaluating the predictive generative models.

• We obtained NRMSE of 2.5% averaged over all the farms.
• The figure below shows the number of infected pigs over time for

nine selected farms.
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Short-term (one-day) prediction. Each plot demonstrates the actual
number of infected pigs in the simulated data (solid green), the mean
estimate of the predictive model (dashed purple), and the standard
deviation of the prediction estimate (shaded red error bar). Each row
represents neighbouring farms in movement network.
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