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Polyphonic Sound Event Detection Task
n DCASE2019・2020 Task 4 [1, 2] ※

− Task Definition: detection of multiple sound event intervals in acoustic data 
for domestic environments
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Improvement of detection accuracy of sound event intervals in practical environment situations

※ DCASE : Detection and Classification of Acoustic Scenes and Events

[1] N. Turpault, et al., “Sound event detection in domestic environments with weakly labeled data and soundscape synthesis,” Proc. of DCASE2019, pp.253–257, 2019.
[2] N. Turpault, et al., “Training sound event detection on a heterogeneous dataset,” Proc. of DCASE2020, pp. 200–204, 2020.

Goal 



Label Information on the Task 
n Three sorts of label types are included in the dataset 
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Hard label Soft label Unlabeled

Label image

Label
class 〇 〇 ✕
interval 〇 ✕ ✕

Amount of data small small large
Difficulty of collection high middle low

This study proposes a model structure that can utilize soft-labeled and unlabeled data

Because collecting hard-labeled data is very costly, soft-labeled or unlabeled data should be utilized



Related Work (1/2)
n Online Knowledge Distillation [3]

− Considering the output of the ensemble net as a reference, each subnetwork 
extracts powerful features for classification
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Improved performance of each subnetwork ➡ Improved overall performance
[3] J. Kim, M. Hyun, I. Chung, N. Kwak, “Feature Fusion for Online Mutual Knowledge Distillation,” Proc. of the 2020 25th International Conference on Pattern Recognition (ICPR),

pp. 4619-4625, 2020.
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Related Work (2/2)
n Mean-Teacher model (the baseline model of the DCASE 2019・2020 Task4)

Ø Student model (For training and evaluation) : Use the recent weights for classification
Ø Teacher model (For training only) : Use the past to recent weights of the student model
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Summary of Our Research

n Goal of our research
− Improvement of accuracy of sound event detection on 

the DCASE Task 4
n Proposed approach 

− Use Peer Collaborative Learning (PCL) [4] , an integration and development 
of online knowledge distillation and mean-teacher approaches

− Propose an effective combination of PCL and acoustic data augmentation
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RESULT: Baseline (31.1%※) ▶ Proposed (44.2%※)
※ F1-score was used as evaluation measure 

[4] Guile Wu and Shaogang Gong, “Peer collaborative learning for online knowledge distillation,” Proc. of AAAI 2021, vol. 35, no. 12, pp. 10302–10310, May 2021.



Pre-processing

【Proposed】PCL with Data Augmentation
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Pre-processing

Data Pre-Processing
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Pre-processing

Peer Collaborative Learning
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PCL Model Details
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Experimental Setup
n Dataset

− DCASE 2019 Task4 [1]

− Sounds expected to occur in home environment (1 file = 10 seconds duration)

n Evaluation measure
− F1-score [%] based on the interval of 

sound event occurrence
Ø The student model is used for evaluation
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Label type # of data [ /file ] Remarks

Training

Hard label 2,045 Known event intervals

Soft label 1,578 Unknown event intervals

Unlabeled 14,412

Validation
Hard label

1,168
Known event intervals

Evaluation 692

Num. of event classes: 10

Alarm/bell/ringing Electric shaver/
toothbrush

Blender Frying

Cat Running water

Dishes Speech

Dog Vacuum cleaner

2.20～4.10 [s]Dog
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Four Competitive Approaches
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Baseline 
(mean-teacher) Online KD[3]  w/ DA PCL w/ DA (proposed) PCL w/o DA

Model 
image

Online KD w/ DA: Online knowledge distillation with data augmentation
PCL w/ DA:            Peer collaborative learning with data augmentation
PCL w/o DA:         Peer collaborative learning without data augmentation
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Evaluation Results (F1-score [%])
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Baseline Online KD w/ DA PCL w/ DA PCL w/o DA

Validation 25.9 43.1 43.8 41.7

Evaluation 31.1 43.4 44.2 42.4

l Confirmation of the effectiveness of the PCL model, which evolved from 
the online knowledge distillation and mean-teacher methods

l It is valid to design sub-networks based on the data augmentation process

★ Experimental findings 
1. PCL

Online KD
2. PCL w/ DA

Online KD w/ DA> Baseline > PCL w/o DA
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Conclusions

n Motivation (Goal)
− Improvement of accuracy of polyphonic sound event detection on the DCASE Task4 task

n Proposed approach
− Peer collaborative learning model, which evolved from the online knowledge distillation 

and mean-teacher methods with audio data augmentation

n Experimental results (F1-score)
− Baseline (mean-teacher) 31.1% →⇨⇛ PCL with data augmentation 44.2%

n Future work
− We will implement and experiment with new knowledge distillation methods, such as 

collaborating with other knowledge distillation methods
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