Flow-Based Fast Multichannel Nonnegative Matrix Factorization for Blind Source Separation

Mathieu Fontaine^{3,1} Yoshiaki Bando^{4,1} Aditya Arie Nugraha^{1,2} *Kouhei Sekiguchi*^{1,2}

¹ Center for Advanced Intelligence Project, RIKEN, Japan ³ LTCI, Télécom Paris, Institut Polytechnique de Paris, France ² Graduate School of Informatics, Kyoto University, Japan
⁴ National Institute of Advanced Industrial Science and Technology, Japan

1 MOTIVATION

- The time-invariant filtering in typical blind source separa (BSS) methods may have sub-optimal interference reduc due to the possible data variation in a mixture.
- NF-IVA [1] that performs time-varying demixing made po ble by normalizing flow (NF) has been shown to outperfe the standard independent vector analysis (IVA) with ti invariant demixing.
- We expect that time-varying transform by NF would also benefit other separation methods, but the NF has been limited to determined separation due to its bijective nature.

PSD (via NMF) λ_{nft} SCM \mathbf{G}_{nf} **FastMNMF:** $\mathbf{x}_{nft} \sim \mathcal{N}_{\mathbb{C}}^{M} \left(\mathbf{0}, \left(\sum_{k=1}^{K} u_{ncf} v_{nct} \right) \right)$ $\mathbf{y}_{ft} \triangleq \mathbf{Q}_f \mathbf{x}_{ft} \sim \mathcal{N}_{\mathbb{C}}^M (\mathbf{0}, \sum_{n=1}^N \lambda_{nft} \operatorname{Diag}(\tilde{\mathbf{g}}_n))$

$$\iff \{\mathbf{y}_{ft}\}_m \sim \mathcal{N}_{\mathbb{C}}\left(0, \sigma_{mft}^2 \triangleq \sum_{n=1}^N \lambda_{nft}\{\tilde{\mathbf{g}}_n\}_m\right)$$

the mixture decorrelation by an NF

NF-FastMNMF: $\mathbf{y}_{ft} = \mathbf{W}_{K,f} \quad \mathbf{W}_{K-1,ft} \mathbf{W}_{K-2,f}$ the *L*-th flow block

Separation by Wiener filtering for (NF-)FastMNMF:

$$\widehat{\mathbf{x}}_{nft} \triangleq \mathbb{E}[\mathbf{x}_{nft} | \mathbf{x}_{ft}] = \mathbf{Q}_f^{-1} \operatorname{Diag} \left(\frac{\lambda_{nft} \widetilde{\mathbf{g}}_n}{\sum_{n'=1}^N \lambda_{n'ft} \widetilde{\mathbf{g}}_{n'}} \right) \mathbf{Q}_f \mathbf{x}_{ft}$$

Test cases: underdetermined, determined, overdetermined

- Sources: 3 speech signals + 1 environmental noise signal
- Speech from WSJ0 dataset, while noise from DEMAND dataset, while (living room, office room, cafetaria)
- Ratio of speech mixture and noise \in {6, 12, 18} dB
- -Room size: 6 x 6 x 3 m Reverberation: RT60 ~ $\mathcal{U}[0.2s, 0.00]$
- Number of mics: 3, 4, 7 microphones (of 7-microphone ar
- Total number of mixtures: 270
- Sampling rate: 16 kHz STFT: 1024-point w/ 75% overlap
- Source conditions: *stationary* and *non-stationary*

-Non-stationary condition: the speakers move at 2 rai time instances to simulate the movement when som shifts the body weight sideways.

2 KEY POINTS

ation ction	•We show that the joint diagonalization techniq MNMF [2] <i>enables the NF to be applicable to non-</i> <i>separation</i> .
ossi- form ime-	• The NF allows us to have <i>time-varying diagonalize forms</i> , instead of time-invariant ones as in FastI are expected to better cope with possible data var

• To increase the expressiveness, the NF includes neural networks (NNs) estimating upper triangular transformation matrices, rather than diagonal ones as in the NF-IVA.

③ NF-FASTMNMF: NORMALIZING FLOW × FAST MULTICHANNEL NONNEGATIVE MATRIX FACTORIZATION

$\ln p(\mathbf{X}) = -\sum_{m,f,t=1}^{m,r,r}$	$\left(\frac{ \{\mathbf{y}_{ft}\}_m ^2}{\sigma_{mft}^2}\right)$	$+\ln\sigma_{mft}^2$	$+T\sum_{k'\in\mathbb{K}^{\mathrm{odd}}}$
$+\sum_{k''\in\mathbb{K}^{\text{even}}}$	$\sum_{m,f,t=1}^{M,F,T} \ln \left \cdot \right $	$\{\mathbf{W}_{k'',ft}\}_{mm}$	$\Big ^2 + \sum_{k'' \in \mathbb{K}^{\text{even}}} \Big]$

	diagonal (diag	dian perfo	ormance Ser triance	scores ular (+	of the c	liffere	nt separ Δ high	ation m er valu	ethods (on the ster for	stationa all perf	<i>iry</i> and	non-stat	tionary	dataset	S. \mathbf{W}_k	$''_{,ft}$ 18 \mathfrak{E}	either a
	performances tal	king into a	account t	the 95%	6 confi	dence	interval	over th	e best p	berform	ances	that are	indicate	ed by th	e star s	ymbol	*.	ine top
	1	0	Blocks	3 mics (underdetermined case)				case)	4 mics (determined case)				7 mics (overdetermined case)					
	Method	$\mathbf{W}_{k^{\prime\prime},ft}$	(L)	SDR	SIR	SAR	PESQ	STOI	SDR	SIR	SAR	PESQ	STOI	SDR	SIR	SAR	PESQ	STOI
aset								Stationa	ry datas	set								
1000	IVA-BP	n/a	0	n/a	n/a	n/a	n/a	n/a	5.7	7.8	15.2	1.50	0.81	7.0	10.7	*17.5	1.80	0.87
	NF-IVA	diag	1	n/a	n/a	n/a	n/a	n/a	5.8	7.6	*15.6	1.52	0.83	6.9	10.5	16.7	1.73	0.88
	NF-IVA	diag	2	n/a	n/a	n/a	n/a	n/a	5.9	7.7	15.4	1.58	0.84	6.9	10.6	16.3	1.71	0.88
	NF-IVA	triu	1	n/a	n/a	n/a	n/a	n/a	5.9	7.8	15.4	1.57	0.83	7.1	10.8	16.9	1.74	0.88
	NF-IVA	triu	2	n/a	n/a	n/a	n/a	n/a	5.8	7.7	15.3	1.56	0.83	7.2	11.2	17.1	1.82	0.89
	FastMNMF-BP	n/a	0	4.7	9.0	9.2	1.34	0.75	6.6	9.8	13.2	1.57	0.80	7.0	11.2	15.7	1.86	0.82
	NF-FastMNMF	diag	1	4.2	7.5	8.6	1.36	0.70	6.8	10.0	13.2	1.57	*0.85	8.5	11.8	16.1	1.79	0.90
7)	NF-FastMNMF	diag	2	4.6	9.2	8.6	1.38	0.71	7.3	10.3	13.5	1.68	0.84	8.3	12.0	16.2	1.85	0.90
/	NF-FastMNMF	triu	1	*5.6	*10.3	*9.3	1.44	0.76	*7.5	10.3	13.6	*1.70	0.84	8.7	12.6	16.2	1.81	0.90
	NF-FastMNMF	triu	2	5.3	10.1	9.1	*1.46	*0.76	6.9	*10.5	13.2	1.65	0.84	*9.2	*13.2	16.3	*2.07	*0.91
							Nc	n-statio	nary da	taset								
	IVA-BP	n/a	0	n/a	n/a	n/a	n/a	n/a	5.5	7.2	*14.2	1.46	0.79	6.1	9.7	*15.7	1.69	0.84
	NF-IVA	diag	1	n/a	n/a	n/a	n/a	n/a	4.9	6.7	13.6	1.46	0.80	5.8	9.6	14.8	1.59	0.84
	NF-IVA	diag	2	n/a	n/a	n/a	n/a	n/a	5.4	7.1	13.8	1.49	0.80	6.0	9.7	14.7	1.62	0.85
	NF-IVA	triu	1	n/a	n/a	n/a	n/a	n/a	5.3	7.2	13.8	1.49	0.79	5.7	9.4	14.8	1.64	0.84
	NF-IVA	triu	2	n/a	n/a	n/a	n/a	n/a	5.3	7.1	14.0	1.50	0.80	6.2	10.0	15.0	1.69	0.84
m	FastMNMF-BP	n/a	0	4.6	8.7	8.4	1.33	0.72	6.0	9.6	11.2	1.45	0.78	6.3	10.2	13.2	1.67	0.82
no	NF-FastMNMF	diag	1	4.0	7.9	7.7	1.31	0.71	6.2	9.3	11.3	1.50	0.83	7.3	10.9	14.6	1.71	*0.88
це	NF-FastMNMF	diag	2	4.3	8.8	7.7	1.32	0.71	*6.7	*10.4	11.8	*1.55	*0.83	7.6	*11.7	14.9	1.77	0.86
	NF-FastMNMF	triu	1	4.6	8.7	*8.5	1.34	0.72	6.5	10.1	11.7	1.55	0.82	7.1	11.1	14.3	1.68	0.85
	NF-FastMNMF	triu	2	*5.0	*9.9	8.3	*1.35	*0.75	5.7	8.9	10.9	1.54	0.81	*7.8	11.4	14.1	*1.84	0.86

Kazuyoshi Yoshii^{2,1}

que in Fast--determined

zation trans-MNMF, that riation.

Mixture spectrograms

 $\mathbf{x}_{ft} \in \mathbb{C}^M$

FastMNMF	
\mathbf{x}_{ft}	
$\mathbf{x}_{ft} \rightarrow \begin{tabular}{lllllllllllllllllllllllllllllllllll$	$ \rightarrow \begin{array}{c} \text{Interme} \\ \rightarrow \\ \text{vecto} \\ \mathbf{h}_{K-1,ft} \end{array} $
NF-FastMNMF	

 $\mathbf{W}_{k'',ft}^{ ext{lower}} \leftarrow ext{NN} \ \mathbf{\Omega}_{k'',f}^{ ext{lower}}$, $\mathbf{W}_{k'',ft}^{ ext{upper}} \leftarrow ext{NN} \ \mathbf{\Omega}_{k'',f}^{ ext{upper}}$, $\mathbf{W}_{k',f} \in \mathbb{C}^{M imes M}$, $k'' \in \mathbb{K}^{\mathsf{even}}$, $k' \in \mathbb{K}^{\mathsf{odd}}$

VP-related regularization term

Parameters to be optimized:

Parameter initialization:

Parameter updates:

- in NF-IVA [1] for warming-up purpose
- $u_{ncf}, v_{nct}, \tilde{\mathbf{g}}_n$: multiplicative update rules in [2]

5 CONCLUSION

- Mixture decorrelation in FastMNMF as an NF optimization.

- separation performance.

6 REFERENCES

- 2173-2177, 2020.
- IEEE/ACM TASLP, vol. 28, pp. 2610–2625, 2020.

 $\boldsymbol{\Psi} \triangleq \{ \mathbf{W}_{k',f}, \boldsymbol{\Omega}_{k'',f}^{\text{upper}}, \boldsymbol{\Omega}_{k'',f}^{\text{lower}}, u_{ncf}, v_{nct}, \tilde{\mathbf{g}}_n | \forall k', \forall k'', \forall n, \forall f, \forall t, \forall c \}$

• Init. $\mathbf{W}_{k',f}, \Omega_{k'',f}^{\text{upper}}, \Omega_{k'',f}^{\text{lower}}$ such that the NF has the identity transform • Init. u_{ncf}, v_{nct} randomly, and $\tilde{\mathbf{g}}_n$ with the circular initialization [2]

• $\mathbf{W}_{k',f}, \Omega_{k'',f}^{\text{upper}}, \Omega_{k'',f}^{\text{lower}}$: gradient descent with backprop. by Adam – for the first 512 epochs, these parameters are optimized as those

• NF can now be applied to non-determined separation thanks to the joint diagonalization technique from FastMNMF.

• Performance: NF-FastMNMF > FastMNMF-BP > NF-IVA \approx IVA-BP.

• The upper triangular affine coupling construction improves the

• Audio samples @ https://aanugraha.github.io/demo/nffastmnmf/.

[1] A. A. Nugraha, K. Sekiguchi, M. Fontaine, Y. Bando, and K. Yoshii, "Flow-based independent vector analysis for blind source separation," IEEE SPL, vol. 27, pp.

[2] K. Sekiguchi, Y. Bando, A. A. Nugraha, K. Yoshii, and T. Kawahara, "Fast multichannel nonnegative matrix factorization with directivity-aware jointlydiagonalizable spatial covariance matrices for blind source separation,"