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¬ MOTIVATION

• The time-invariant filtering in typical blind source separation
(BSS) methods may have sub-optimal interference reduction
due to the possible data variation in a mixture.

•NF-IVA [1] that performs time-varying demixing made possi-
ble by normalizing flow (NF) has been shown to outperform
the standard independent vector analysis (IVA) with time-
invariant demixing.

•We expect that time-varying transform by NF would also ben-
efit other separation methods, but the NF has been limited to
determined separation due to its bijective nature.

­ KEY POINTS

•We show that the joint diagonalization technique in Fast-
MNMF [2] enables the NF to be applicable to non-determined
separation.

• The NF allows us to have time-varying diagonalization trans-
forms, instead of time-invariant ones as in FastMNMF, that
are expected to better cope with possible data variation.

• To increase the expressiveness, the NF includes neural net-
works (NNs) estimating upper triangular transformation ma-
trices, rather than diagonal ones as in the NF-IVA.
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® NF-FASTMNMF: NORMALIZING FLOW × FAST MULTICHANNEL NONNEGATIVE MATRIX FACTORIZATION
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One flow block includes 2 steps: affine coupling and projection.
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In addition to orthogonalizingWk′,f during the forward pass, the log-likelihood
function is computed with a volume-preserving (VP) constraint [1]:
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VP-related regularization term

Parameters to be optimized:

Ψ≜{Wk′,f ,Ω
upper
k′′,f ,Ωlower

k′′,f , uncf , vnct, g̃n|∀k′, ∀k′′, ∀n, ∀f, ∀t, ∀c}

Parameter initialization:

• Init. Wk′,f ,Ω
upper
k′′,f ,Ωlower

k′′,f such that the NF has the identity transform

• Init. uncf , vnct randomly, and g̃n with the circular initialization [2]

Parameter updates:

•Wk′,f ,Ω
upper
k′′,f ,Ωlower

k′′,f : gradient descent with backprop. by Adam

– for the first 512 epochs, these parameters are optimized as those
in NF-IVA [1] for warming-up purpose

• uncf , vnct, g̃n: multiplicative update rules in [2]

¯ EVALUATION

Test cases: underdetermined, determined, overdetermined

• Sources: 3 speech signals + 1 environmental noise signal

– Speech fromWSJ0 dataset, while noise from DEMAND dataset
(living room, office room, cafetaria)

–Ratio of speech mixture and noise ∈ {6, 12, 18} dB
–Room size: 6 x 6 x 3 m – Reverberation: RT60 ∼ U [0.2s, 0.6s]

•Number of mics: 3, 4, 7 microphones (of 7-microphone array)

• Total number of mixtures: 270

• Sampling rate: 16 kHz – STFT: 1024-point w/ 75% overlap

• Source conditions: stationary and non-stationary

–Non-stationary condition: the speakers move at 2 random
time instances to simulate the movement when someone
shifts the body weight sideways.

° CONCLUSION

•Mixture decorrelation in FastMNMF as an NF optimization.

•NF can nowbe applied to non-determined separation thanks to the
joint diagonalization technique from FastMNMF.

• Performance: NF-FastMNMF > FastMNMF-BP > NF-IVA ≈ IVA-BP.

• The upper triangular affine coupling construction improves the
separation performance.

• Audio samples @ https://aanugraha.github.io/demo/nffastmnmf/.
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