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Problem Definition

Given a raw text as input, our goal is to identifies event trigger words and
classifies temporal relations for all predicted event pairs.
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Challenges

® Limited amount of high-quality training data

Pl T #of Documents #of Pairs
Train | Dev | Test | Train | Dev | Test

TB-Dense | 22 5 9 4032 | 629 | 1427

MATRES | 183 - 20 6332 - 827

® | _abel imbalance

TB-Dense




Related Work

-
Wang et al.(2020) adopt common sense Ning et al.(2019) use a Siamese network
features and a comprehensive set of logical combined with trained by a knowledge
constraints to extract TempRel and base,global inference via ILP to extract
subevent relation. TempRel relation.
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Wang et al.,Joint Constrained Learning for Event-Event Relation Extraction. EMNLP 2020.
Ning et al.,An Improved Neural Baseline for Temporal Relation Extraction. EMNLP 2019.



Related Work

Han et al.(2019) proposed a joint event
and TempRel method with shared
representation and structured
prediction.
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Wen et al.,(2021) proposed a schema-
guided cross-document cross-lingual
cross-media model for event and event
relation extraction.
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Figure 1: The architecture of RESIN schema-guided information extraction and temporal event tracking system.

Han et al.,Joint Event and Temporal Relation Extraction with Shared Representations and Structured Prediction. EMNLP 2019.
Wen et al.,RESIN: A Dockerized Schema-Guided Cross-document Cross-lingual Cross-media Information Extraction and Event Tracking System.NAACL 2021.



Motivation

Limited amount of high-quality training
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Our model
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Temporal Datasets

=Dt | TB-Dense | MATRES
It is one of the basic data sets
for temporal relation extraction, # of Documents
and contains three parts: == A -
TimeBank, AQUAINT and Train 2 183
Platinum. Dev 5 -
Test 9 20

L"AT%E& | " # of Pairs

ing Qiang et al proposed in =7 107 277
2018 that this dataset evolved Tram 4032 6332
and improved from TempEval3 Dev 629 -
dataset and had high IAA rate. Test 1427 Q27




Experiments

® Overall performance

_ TB-Dense MATRES
Viodel(+1%) Event | Relation | Event | Relation

CAEVO|3] 87.4 57.0 - -
CogCompTime|12] - - 83.2 65.9
Perceptron|13] - - - 69.0
RNN+CSE+ILP|[2] - - - 76.3
BiLSTM+MAP[4] 89.2 64.5 86.4 13.5
Our Model 88.1 65.6 86.5 76.6




® Single relation performance

Experiments

Fedi] BiLSTM+MAP Our Model

| R. F1. P. R. Fi.
B 704 | 58 | 63.6 | 799 | 58 | 67.2
A 61.0 | 69 | 647 | 70.1 | 66.7 | 68.4
| 238 | 90 | 13.0 | 389 | 125 | 18.9
11 40.0 | 30.1 | 344 | 46.7 | 26.4 | 33.7
S _ _ _ _ i i
\Y% 61.2 | 67.2 | 64.1 | 61.4 | 784 | 68.9

BEFORE(B),AFTER(A),INCLUDES(I),IS INCLUDED(II),

SIMULTANEOUS(S),VAGUE(V).




Experiments

® Ablation Tests

Method(F1%) TB-Dense | MATRES
All Components 63.6 76.6
w/o Knowledge + Attention | 62.0 74.6
w/o Attention 62.3 9.1
w/o DataAugmentation 62.6 75.3
w/o Focall.oss 62.8 s W,




Conclusion and Future Work

O We propose a novel neural model for joint event and
temporal relation extraction,which integrates temporal
commonsense knowledge, data augmentation and
FocalLoss function.

[ The experimental results on two benchmark datasets
show the effectiveness of our method and all three
components.

O In the future, we will focus on solving the problem of
few-shot labels.
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