

## Background Increased demand for efficient mel-spectrogram vocoder Text-to-speech synthesis (Text $\rightarrow$ Waveform) **Mel-spectrogram** vocoder Text Mel-spec. Voice conversion (Waveform $\rightarrow$ Waveform) Mel-spectrogram Waveform vocoder Mel-spec. Mel-spec. -Compact & expressive **Typical mel-spectrogram vocoders** Signal processing-based solution Waveform (3) iSTFT Magnitude Phase (2) Reconstruct phase (1) Recover scale **Pros:** Exploits time-frequency structure explicitly **Cons:** Requires redundant estimation (reconstruction of high-dim. spec.) **DNN-based shortcut solution** 0 Waveform Phase Magnitude DNN upsampling (shortcut) **Pros:** Does not require **redundant estimation** (reconstruction of high-dim. spec.) **Cons:** Cannot exploit **time-frequency structure** explicitly **2** Key idea: Hybrid approach Utilization of both strengths Phase Magnitude Waveform **iSTFT** Low dim. spec. DNN upsampling (shortcut) **Pros:** Avoids redundant estimation using DNN upsampling **Pros:** Exploits time-frequency structure explicitly using iSTFT

# iSTFTNet: Fast and Lightweight Mel-Spectrogram Vocoder **Incorporating Inverse Short-Time Fourier Transform**

Takuhiro Kaneko, Kou Tanaka, Hirokazu Kameoka, Shogo Seki NTT Communication Science Laboratories, NTT Corporation, Japan





## **SPE-7.5**

# **IEEE ICASSP 2022**

**Audio samples** https://www.kecl.ntt.co.jp/people/ kaneko.takuhiro/projects/istftnet/

- Audio clips: 13,100 (24 h) (training: 12,500, validation: 250, evaluation: 250)

- Audio features: Log-mel spectrogram (FFT: 1024, hop: 256, window: 1024)

- MOS1: Mean opinion score on naturalness (from 1 (bad) to 5 (excellent)) -  $cFW2VD\downarrow$ : Distance between real & generative distributions in wav2vec 2.0 - **Speed 1**: Relative speed compared to real time on GPU/CPU

- HiFi-GANs [Kong+2020]: V1 (high-quality), V2 (lightweight), V3 (fast) - Multiband (MB)-MelGAN [Yang+2021], Parallel WaveGAN (PWG) [Yamamoto+2020]

# **Results** (Synthesis from ground-truth mel-spectrogram)

| $2\mathrm{VD}\!\!\downarrow$ | Speed on GPU $\uparrow$                                                                         | Speed on CPU $\uparrow$ #                                                               | Param (M)↓                                                                                   |
|------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|                              | _                                                                                               |                                                                                         | _                                                                                            |
| )20<br>)18<br>)20<br>)73     | $	imes 143.59 (100) \\ 	imes 179.42 (125) \\ 	imes 245.68 (171) \\ 	imes 609.43 (424) \\ 	imes$ | $	imes 1.34 (100) \\ 	imes 1.63 (122) \\ 	imes 2.33 (174) \\ 	imes 7.57 (565) \\ 	imes$ | $\begin{array}{c} 13.94 \ (100) \\ 13.80 \ (99) \\ 13.26 \ (95) \\ 10.89 \ (78) \end{array}$ |
| )46<br>)38<br>)42<br>)96     | $	imes 624.47 (100) \\	imes 732.96 (117) \\	imes 1025.46 (164) \\	imes 1720.91 (276) \\	imes$   | $	imes 10.39 (100) \ 	imes 13.34 (128) \ 	imes 20.37 (196) \ 	imes 68.05 (655)$         | $\begin{array}{c} 0.93 \ (100) \\ 0.92 \ (99) \\ 0.89 \ (96) \\ 0.78 \ (84) \end{array}$     |
| )52<br>)55<br>156            | $	imes 933.06 (100) \\	imes 1517.70 (163) \\	imes 2481.87 (266) \\	imes$                        | $	imes 10.40 \ (100) \ 	imes 21.48 \ (206) \ 	imes 66.83 \ (642)$                       | $\begin{array}{c} 1.46 \ (100) \\ 1.42 \ (97) \\ 1.28 \ (87) \end{array}$                    |

with *reasonable quality* when 3 or 2 blocks are retained

### Q2. Necessity of combining DNN upsampling & iSTFT

| $\mathbf{D}\downarrow$ | Speed on GPU $\uparrow$                          | Speed on $\mathbf{CPU}\uparrow$              | # Param (M) $\downarrow$                                                                                     |
|------------------------|--------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------|
|                        | $\times 245.68$ (171)<br>$\times 326.39$ (227)   | $\times 2.33$ (174)<br>$\times 3.97$ (296)   | $\begin{array}{ccc} 13.26 & (& 95) \\ 19.15 & (& 137) \end{array}$                                           |
|                        | $\times 1025.46$ (164)<br>$\times 1081.37$ (173) | $\times 20.37$ (196)<br>$\times 39.14$ (377) | $\begin{array}{c} 0.89 & (96) \\ 1.30 & (140) \end{array}$                                                   |
|                        | $\times 1517.70$ (163)<br>$\times 1925.15$ (206) | $\times 21.48$ (206)<br>$\times 41.16$ (396) | $\begin{array}{c} 1.42 \ ( \begin{array}{c} 97 ) \\ 1.77 \ ( \begin{array}{c} 121 \end{pmatrix} \end{array}$ |
|                        |                                                  |                                              |                                                                                                              |

| $\downarrow$ | Speed on $\mathbf{GPU}\uparrow$ | Speed on $CPU\uparrow$                                     | # Param (M) $\downarrow$                    |
|--------------|---------------------------------|------------------------------------------------------------|---------------------------------------------|
|              | $\times 1025.46$                | $\times 20.37$                                             | 0.89                                        |
|              | $	imes 1070.95 \\ 	imes 79.71$  | $\begin{array}{c} \times 17.95 \\ \times 0.70 \end{array}$ | $\begin{array}{c} 2.54 \\ 1.35 \end{array}$ |

### Quality & Size: *iSTFTNet* is *best* Speed: *iSTFTNet* = MB-MelGAN

## **Application to text-to-speech synthesis**

|                        | $\mathbf{MOS}\uparrow$                                            | $\mathbf{cFW2VD}{\downarrow}$                 |
|------------------------|-------------------------------------------------------------------|-----------------------------------------------|
|                        | $4.32 \hspace{0.1cm} \pm 0.10$                                    | —                                             |
| /1<br>/1 <b>-C8C8I</b> | $\begin{array}{c} 4.09 \ \pm 0.12 \\ 4.25 \ \pm 0.11 \end{array}$ | $\begin{array}{c} 0.216 \\ 0.214 \end{array}$ |
| 10+2021]               | $3.66 \hspace{0.1 cm} \pm 0.15$                                   | 0.242                                         |

# - *iSTFTNet* is *better* than or *comparable* with **baselines**