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Signal Model
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The DOA φ can be an angle (azimuth ϕ) or a set of angles (azimuth ϕ and elevation ϑ).
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φ: direction of arrival (DOA)

µ: frequency index
λ: frame index

j: source index
n: microphone index

dir: direct path
rev: reverberation



Introduction Prior Work Research Goals Architecture Training Data Experiments Moving Sources Conclusions

CNN Based (Single-Frame) DOA Classification1

The (unavailable) direct-path components Sdir
j,n(µ, λ) are attenuated and phase-shifted

versions of the clean source signals, where the phase shifts are dependent on the DOA.
I Therefore, the (available) microphone signal phases ∠Yn(µ, λ) represent a suitable input

for a deep neural network (DNN).
I Define a phase map Φλ, which consists of the phases for the M ′ discrete frequencies up to

the Nyquist frequency for all N microphones.

We can interpret DOA estimation as a classification problem, where the classes are
defined based on a grid of I discrete DOAs φ ∈ {φ1, . . . , φI}.

I The posterior probabilities P (φi|Φλ) represent a suitable output for a DNN.

1 S. Chakrabarty and E. A. P. Habets. “Multi-Speaker DOA Estimation Using Deep Convolutional Networks Trained
With Noise Signals”. In: IEEE Journal of Selected Topics in Signal Processing 13.1 (2019), pp. 8–21. issn: 1932-4553.
doi: 10.1109/JSTSP.2019.2901664
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CNN Based (Single-Frame) DOA Classification1: Architecture

(2× 1) Conv (64 feature maps)
1×N ×M ′

Φλ

(2× 1) Conv (64 feature maps)

64× (N − 1)×M ′

64× (N − 2)×M ′

Flatten

64× 1×M ′

Fully connected (FC) (512 nodes)
64 ·M ′

Fully connected (FC) (512 nodes)
512

Output (I nodes)
512

I
P (φi|Φλ) for i = 1, . . . , I

1 S. Chakrabarty and E. A. P. Habets. “Multi-Speaker DOA Estimation Using Deep Convolutional Networks Trained
With Noise Signals”. In: IEEE Journal of Selected Topics in Signal Processing 13.1 (2019), pp. 8–21. issn: 1932-4553.
doi: 10.1109/JSTSP.2019.2901664
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CNN Based (Single-Frame) DOA Classification1: Training Data

Yn(µ, λ) =
∑

j

(
Sdir
j,n(µ, λ) + Srev

j,n (µ, λ)
)
+ Vn(µ, λ) =

∑

j

Smic
j,n (µ, λ) + Vn(µ, λ)

Sources Smic
j,n (µ, λ): time domain convolution of uncorrelated noise with simulated room

room impulse responses

DOAs: a fixed direction is randomly selected for each source

Summation: synthetically enforced W-disjoint orthogonality (only 1 source per
time-frequency bin contributes to the microphone signals) : DNN learns
to make use of the approximate W-disjoint orthogonality of speech

Noise Vn(µ, λ): noise (spatially and temporally uncorrelated) is added with a randomly
chosen signal-to-noise ratio

1 S. Chakrabarty and E. A. P. Habets. “Multi-Speaker DOA Estimation Using Deep Convolutional Networks Trained
With Noise Signals”. In: IEEE Journal of Selected Topics in Signal Processing 13.1 (2019), pp. 8–21. issn: 1932-4553.
doi: 10.1109/JSTSP.2019.2901664
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Extension to Multi-Frame DOA Estimation
1 The DOA estimation is performed independently for each frame, although temporal

context is very useful particularly due to the DOAs typically changing quite slowly.
I We can modify the architecture so that information from previous frames can be taken

into account as well.

2 The training data generation is designed for single-frame DOA estimation.
I For an extension to multi-frame DOA estimation, we propose a model based generation of

simulated training data that accounts for time-variant source activity and DOA changes.

3 To make the best use of the approach, a better understanding of the relation between
training setup and performance is needed.

I In addition to comparing different variants of the architecture, we also conduct experiments
to evaluate the importance of various parameters, including the source signal type and
the spatial characteristics of the noise.

The aim of this work is to study how best to incorporate temporal context in DNN based
DOA estimation in general, and how training data suitable for this purpose can be generated
accordingly, not the specific CNN approach we make use of.
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CNN Architectures for DOA Classification With Temporal Context
Replace the second FC layer by a long short-term memory (LSTM) layer:

(2× 1) Conv (64 feature maps)
1×N ×M ′

Φλ

(2× 1) Conv (64 feature maps)

64× (N − 1)×M ′

64× (N − 2)×M ′

Flatten

64× 1×M ′

FC (512 nodes)
64 ·M ′

LSTM (512 nodes)

512

Output (I nodes)
512

I
P (φi|Φλ,Φλ−1, . . . ) for i = 1, . . . , I
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CNN Architectures for DOA Classification With Temporal Context
Add a temporal convolutional network (TCN) between the FC layers:

(2× 1) Conv (64 feature maps)
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(2× 1) Conv (64 feature maps)

64× (N − 1)×M ′

64× (N − 2)×M ′

Flatten

64× 1×M ′

FC (512 nodes)
64 ·M ′

TCN+FC (512 nodes)

512

Output (I nodes)
512

I
P (φi|Φλ,Φλ−1, . . . ) for i = 1, . . . , I
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Training Data: Simulating Dynamic Scenes
Updated signal model:
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∑
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)
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only needed when noise is used for the source signals!
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Training Data: Generating the Microphone Signals

Yn(µ, λ) =
∑

j

(
Aj(λ)S

mic
j,n (µ, λ)

)
+ Vn(µ, λ)

Sources Smic
j,n (µ, λ): time domain convolution of clean speech with simulated room room

impulse responses

DOAs: a different direction is randomly selected every time a source becomes
active again (Aj(λ) = 1, Aj(λ− 1) = 0)

Summation: no need to artificially introduce W-disjointness when realistic source
signals are used : sufficient to simply sum up all sources

Noise Vn(µ, λ): noise (spatially diffuse, temporally uncorrelated) is added with a
randomly chosen signal-to-noise ratio
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Evaluation Setup

Yn(µ, λ) =
∑

j

Smic
j,n (µ, λ) + Vn(µ, λ)

Sources Smic
j,n (µ, λ): time domain convolution of clean speech with recorded room room

impulse responses (T60 = 660ms)

DOAs: with a probability of 50%, a different direction is randomly selected
after the end of an utterance

Noise Vn(µ, λ): spatially diffuse, temporally uncorrelated
⊕

Microphone array: 9-microphone uniform rectangular array
⊕

DOA estimation: I = 37 DOA classes (azimuth angles ϕ = 0°, 5°, . . . , 180°)
⊕

Additional results for a different setup available in the paper.

9 / 13

4.2 cm

4
.2
cm



Introduction Prior Work Research Goals Architecture Training Data Experiments Moving Sources Conclusions

Experimental Results: Training Setup
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noise spatial characteristics?
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Experimental Results: Training: Architecture Extensions
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Experimental Results: Training: Architecture Extensions
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Moving Sources1
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1 Alexander Bohlender, Liesbeth Roelens, and Nilesh Madhu. Latency Controlled Deep Moving Speaker Tracking Using
Simulated Training Data. unpublished (submission under review)
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Conclusions
The following conclusions can be drawn with regard to the formulated research goals:

1 The employed architecture must be capable of exploiting temporal dependencies.
I Relatively slowly changing DOAs make it interesting to take advantage of long-term

temporal context.
I A simple but effective option to achieve this is to include an LSTM layer in the CNN.

2 The training data must allow the DNN to learn how the DOA estimation can be improved
with information from previous frames. This includes the detection of DOA changes.

I We simulate acoustic scenes with time-variant source activity and DOAs.
I This enables the CNN/LSTM approach to clearly outperform the CNN baseline, where the

output is simply averaged over a fixed period of time.

3 A better understanding of the relation between training setup and performance is needed.
I Experiments demonstrate that realistic (correlated) source signals should be used to train

the network when the architecture permits the use of temporal context.
I The spatial properties of the noise are relevant as well.
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