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Global optimization

Given nonconvex f : Rd → R and X ⊂ Rd, find the set

S𝜖 :=
{
x ∈ X, such that f (x) ≤ min

x∈X
f (x) + 𝜖

}
.

Boltzmann distributions
▶ Boltzmann distributions: 𝜋T (x) ∝ exp

(
−1
T f (x)

)
▶ Cooling schedule: temperatures {Tk}k∈N, with Tk → 0
▶ Concentration towards the global minimizer

𝜋Tk(S𝜖) → 1.

Simulated Annealing (SA) [3]

▶ Metropolis-Hastings kernels: 𝜋TkPk = 𝜋Tk

▶ Proposals: 𝜇k+1 = 𝜇kPk
▶ Logarithmic cooling schedule: Tk = K

log(k+1)
▶ Total variation norm convergence [1]

| |𝜋Tk − 𝜇k | |TV → 0.

SA with parametric proposals [2]

▶ Parametric proposals: q𝜃k, 𝜃k ∈ Θ (exponential family)

▶ Parameters are set through

𝜃k+1 = argmin
𝜃∈Θ

KL(𝛼k𝜋Tk+1 + (1 − 𝛼k)q𝜃k, q𝜃)

▶ This update is then approximated with samples from q𝜃k
▶ Logarithmic cooling schedule needed for convergence.

The case for adaptive cooling schedule

▶ The logarithmic cooling schedule is slow.

▶ Intractable constants are often involved.

▶ The algorithm can possibly be stopped before T = 0.

Alternating proximal SA (APSA)

▶ Parameters are set through

𝜃k = argmin
𝜃∈Θ

KL(𝜋Tk, q𝜃) + 𝜌KL(q𝜃k−1, q𝜃).

▶ Temperatures are set through

Tk+1 = argmin
T>0

KL(𝜋T, q𝜃k) + 𝜆T 2 + 𝜌KL(𝜋Tk, 𝜋T) .

{𝜋T, T > 0}
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Figure: Geometric interpretation of APSA for 𝜌 = 0 and 𝜆 > 0.

Numerical results

A Rosenbrock-like objective is used:

f (x) = 5(x2 − x21)2 + (1 − x1)2, ∀(x1, x2) ∈ R2.
Results are averaged over 1000 iterations, N = 500
samples per iteration and Gaussian proposals.

Figure: Comparison of APSA (blue), MARS [2] (red), SMCSA [5]
(green) and mFSA [4] (purple), with 𝜌 = 1 and 𝜆 = 5. MARS and
SMCSA use a logarithmic schedule, while mFSA uses a faster one.

▶ APSA converges very fast to a low value of f .
▶ The temperature decreases but stops before T = 0.
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