Proximal-based adaptive simulated annealing for global optimization #6676

Émilie Chouzenoux[†], Víctor Elvira^{*‡} and Thomas Guilmeau[†] † Université Paris-Saclay, CentraleSupélec, Inria, CVN, France, * School of Mathematics, University of Edinburgh, United Kingdom ‡ The Alan Turing Institute, United Kingdom

Global optimization

Given nonconvex $f : \mathbb{R}^d \to \mathbb{R}$ and $X \subset \mathbb{R}^d$, find the set $S_{\epsilon} := \left\{ x \in \mathcal{X}, \text{ such that } f(x) \leq \min_{x \in \mathcal{X}} f(x) + \epsilon \right\}.$

Boltzmann distributions

- Boltzmann distributions: $\pi_T(x) \propto \exp\left(-\frac{1}{T}f(x)\right)$
- Cooling schedule: temperatures $\{T_k\}_{k \in \mathbb{N}}$, with
- Concentration towards the global minimizer

 $\pi_{T_k}(S_{\epsilon}) \to 1.$

Simulated Annealing (SA) [3]

- Metropolis-Hastings kernels: $\pi_{T_k}P_k = \pi_{T_k}$
- Proposals: $\mu_{k+1} = \mu_k P_k$

erc

- Logarithmic cooling schedule: $T_k = \frac{K}{\log(k+1)}$
- Total variation norm convergence [1]

$$||\pi_{T_k}-\mu_k||_{TV}\to 0.$$

SA with parametric proposals [2]

Parametric proposals: $q_{\theta_k}, \theta_k \in \Theta$ (exponential family) Parameters are set through

$$\theta_{k+1} = \arg\min_{\theta \in \Theta} KL(\alpha_k \pi_{T_{k+1}} + (1 - \alpha_k)q_\theta)$$

- This update is then approximated with samples from $q_{\theta_{\mu}}$
- Logarithmic cooling schedule needed for convergence.

$$x)\big)$$

$$h T_k \to 0$$

 $\theta_k, q_{ heta})$

The case for adaptive cooling schedule

The logarithmic cooling schedule is slow. Intractable constants are often involved. The algorithm can possibly be stopped before T = 0.

Alternating proximal SA (APSA)

 $\{q_{\theta}, \theta \in \Theta\}$

Figure: Geometric interpretation of APSA for $\rho = 0$ and $\lambda > 0$.

APSA converges very fast to a low value of f.

References

- 1
- [2]
- 3 nealing". In: *Science* 220.4598 (1983), pp. 671–680.
- [4]
- 5 nal of Global Optimization 55 (2013), pp. 101–124.

The temperature decreases but stops before T = 0.

H. Haario and E. Saksman. "Simulated Annealing Process in General State Space". In: Advances in Applied Probability 23.4 (1991), pp. 866–893.

. Hu and P. Hu. "Annealing adaptive search, cross-entropy, and stochastic approximation in global optimization". In: Naval Research Logistics 58.5 (2011).

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. "Optimization by Simulated An-

S. Rubenthaler, T. Rydén, and M. Wiktorsson. "Fast simulated annealing in \mathbb{R}^d with an application to maximum likelihood estimation in state-space models". In: Stochastic Processes and their Applications 119.6 (2009), pp. 1912–1931.

E. Zhou and X. Chen. "Sequential Monte Carlo simulated annealing". In: Jour-

