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Non-convex problems are hard...

Figure: Level sets of a non-convex function in R2

Non-convex problems possibly have

• several global minimizers,

• local minima,

• saddle points,

• a combination of the three...
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And it is hard to avoid them

Many data science tasks can be formulated as optimization problems

Find x ∈ X s.t. f (x) = f∗ = min
x∈X

f (x).

Not all of these problems are convex. It can be because of:

• Sparsity penalty1,

• Low-rank prior2,

• Non-linear inverse problems3...

1A. Marmin et al. “Sparse signal reconstruction for nonlinear models via piecewise rational
optimization”. In: Signal Processing 179 (2021), 107835:1–107835:13.

2Y. Chi, Y. M. Lu, and Y. Chen. “Nonconvex Optimization Meets Low-Rank Matrix Factorization: An
Overview”. In: IEEE Transactions on Signal Processing 62.20 (2019), pp. 5239–5269.

3T. Bonesky, D. Lorenz, and P. Maas. “A generalized conditional gradient method for nonlinear
operator equations with sparsity constraints”. In: Inverse Problems 23.5 (2007).
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Global minimizers and Boltzmann distributions

For global optimization, we are interested in
exploring two types of sets

• S∗ = {x ∈ X , f (x) = f∗},
• Sε = {x ∈ X , f (x) ≤ f∗ + ε}.

The Boltzmann distributions πT concentrate
on those sets as the parameter T goes to 0.

Temperatures Boltzmann distributions

T πT (x) = exp
(
− 1

T f (x)− B(T )
)

↓ ↓
0 δS∗(x)

B(T ) is the log-partition function of πT .
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Approaching the Boltzmann distributions

Boltzmann distributions are intractable:

• Their normalization constants
∫
exp

(
− 1

T f (x)
)
dx are unknown,

• Generating samples x ∼ πT is hard,

• Lower values values of T make it even more challenging!

SA in a nutshell

SA algorithms track a sequence of intractable Boltzmann distributions {πTk
}k with

Tk → 0 by constructing a sequence of tractable proposal distributions {qk}k .

Most of the times, proposals are constructed by iterating Markov kernels qk+1 = qkPk . In
this work, we focus on parametric proposals qk = qθk .
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Standard simulated annealing5 (SA)

Consider the Metropolis-Hastings kernel Pk such that πTk
= πTk

Pk .
Applying this kernel4 brings us closer to πTk

: qPk is closer to πTk
than q.

Simulated annealing consists in tracking πTk
with qk = q0P1 · · ·Pk−1Pk .

Convergence of SA

If Tk = C(f )
log(k+1) , then ||πTk

− qk ||TV −→ 0.

• TV convergence implies convergence to the set Sε for any ε > 0,

• The logarithmic schedule is often considered too slow.

4G. O. Roberts and J. S. Rosenthal. “General State Space Markov Chain and MCMC algorithms”. In:
Probability Surveys 1 (2004), pp. 20–71.

5H. Haario and E. Saksman. “Simulated Annealing Process in General State Space”. In: Advances in
Applied Probability 23.4 (1991), pp. 866–893.
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Parametric proposals

Q = {qθ, θ ∈ Θ} is an exponential family if

qθ(x) = exp (⟨θ, Γ(x)⟩ − A(θ)) , ∀x ∈ X , θ ∈ Θ, (1)

with A being the log-partition function.
Many classes of distributions are exponential families:

• Gaussian distributions, with θ = (Σ−1µ,−1
2Σ

−1)⊤ and Γ(x) = (x , xx⊤)⊤,

• Boltzmann distributions, with parameter θ = 1
T and Γ(x) = −f (x)...

Moment-matching optimality conditions

θ∗ = argmin
θ∈Θ

KL(π, qθ)⇐⇒ qθ∗(Γ) = π(Γ). (2)
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Model annealing random search6 (MARS)

The MARS algorithm relies on this framework of successive minimizations:

1. Design an intermediate target π̂k+1 = αk+1πTk+1
+ (1− αk)qθk

2. Approach qθk+1
(Γ) = π̂k+1(Γ) with importance sampling (Nk samples).

MARS convergence guarantees

The convergence qθk (Γ)→ δS∗(Γ) is guaranteed if λk = k−γ ,
∑

k αk = +∞,∑
k α

2
k > +∞ and either Tk = T0

log(k+1) and Nk = N0k
β or Tk = T0

1+ck and Nk = N0β
k .

• Logarithmic cooling schedule, with polynomially increasing number of samples,

• Linear cooling schedule, with exponentially increasing number of samples.

6J. Hu and P. Hu. “Annealing adaptive search, cross-entropy, and stochastic approximation in global
optimization”. In: Naval Research Logistics 58.5 (2011).
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Proposed adaptive cooling schedule

What is expected from an adaptive cooling schedule?

• If the proposal is a good fit, the schedule should speed up. Else, it should slow down.

• Temperature decrease should be promoted but stopping at T > 0 must be possible.

Boltzmann distributions are exponential, so why not adapt T as well as θ ?

Variational formulation

Our approach is to solve
minimize
T>0, θ∈Θ

KL(πT , qθ) + λR(T ), (3)

with an alternating Bregman proximal algorithm.
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Alternating proximal simulated annealing (APSA)

We propose to minimize the quantity Fλ : (T , θ) 7−→ KL(πT , qθ) + λR(T ) by alternating
Bregman proximal steps7 that reads like

θk =←−−proxAρ−1Fλ(Tk ,·)(θk−1) = argmin
θ∈Θ

(KL(πTk
, qθ) + λR(Tk)) + ρKL(qθk−1

, qθ), (4)

Tk+1 =
−−→proxBρ−1Fλ(·,θk )(Tk) = argmin

T>0
(KL(πT , qθk ) + λR(T )) + ρKL(πT , πTk

). (5)

A decrease property

For every k ∈ N, we have

KL(πTk+1
, qθk+1

) + λR(Tk+1) ≤ KL(πTk
, qθk ) + λR(Tk). (6)

7H. Bauschke, P. Combettes, and D. Noll. “Joint minimization with alternating Bregman proximity
operators”. In: Pacific Journal of Optimization 2 (2006).
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Numerical experiments

We use the Rosenbrock function in R2 as a
benchmark to compare

• MARS (orange),

• mFSA (purple),

• SMC-SA (green),

• APSA (blue).

We used Gaussian proposals indexed by
(µ,Σ) for MARS and APSA. For mFSA and
SMC-SA, we used f (µk) =

1
Nk

∑Nk
i=1 f (x

i
k).

• APSA finds the best values of µ,

• The cooling stops before reaching 0.
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Conclusion

What we saw in this talk:

• We proposed a variational formulation of adaptive simulated annealing,

• The resulting scheme alternatively adapts a parametric proposal and a
temperature,

• It is able to reach good values of the objective very fast,

• But further understanding of its convergence is still needed!

Thank you for your attention!

12 / 15



References

Akyildiz, O. and J. Mı́guez. “Convergence rates for optimised adaptive importance samplers”. In: Statistic and
Computing 31.12 (2021).

Andrieu, C., L. A. Breyer, and A. Doucet. “Convergence of simulated annealing using Foster-Lyapunov criteria”. In:
Journal of Applied Probability 38.4 (2001), pp. 975–994.

Bauschke, H., P. Combettes, and D. Noll. “Joint minimization with alternating Bregman proximity operators”. In:
Pacific Journal of Optimization 2 (2006).

Bezanson, J. et al. “Julia: A Fresh Approach to Numerical Computing”. In: SIAM Review 59.1 (2017), pp. 65–98.
Bonesky, T., D. Lorenz, and P. Maas. “A generalized conditional gradient method for nonlinear operator equations

with sparsity constraints”. In: Inverse Problems 23.5 (2007).
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Onbaşoğlu, E. and L. Özdamar. “Parallel Simulated Annealing Algorithms in Global Optimization”. In: Journal Of
Global Optimization 19.1 (2001), pp. 27–50.

Roberts, G. O. and J. S. Rosenthal. “General State Space Markov Chain and MCMC algorithms”. In: Probability
Surveys 1 (2004), pp. 20–71.

Rubenthaler, S., T. Rydén, and M. Wiktorsson. “Fast simulated annealing in Rd with an application to maximum
likelihood estimation in state-space models”. In: Stochastic Processes and their Applications 119.6 (2009),
pp. 1912–1931.

14 / 15



References (cont.)

Zhou, E. and X. Chen. “Sequential Monte Carlo simulated annealing”. In: Journal of Global Optimization 55 (2013),
pp. 101–124.

15 / 15


	References

