Proximal-based adaptive simulated annealing for global optimization ICASSP 2022

Emilie Chouzenoux[†], Víctor Elvira^{*‡}, and <u>Thomas Guilmeau[†]</u>

† Université Paris-Saclay, CentraleSupélec, Inria, CVN, Gif-sur-Yvette, France
 * School of Mathematics, University of Edinburgh, United Kingdom
 ‡ The Alan Turing Institute, United Kingdom

Non-convex problems are hard...

Figure: Level sets of a non-convex function in $\ensuremath{\mathbb{R}}^2$

Non-convex problems possibly have

- several global minimizers,
- local minima,
- saddle points,
- a combination of the three...

Many data science tasks can be formulated as optimization problems

Find
$$x \in \mathcal{X}$$
 s.t. $f(x) = f_* = \min_{x \in \mathcal{X}} f(x)$.

Not all of these problems are convex. It can be because of:

- Sparsity penalty¹,
- Low-rank prior²,
- Non-linear inverse problems³...

¹A. Marmin et al. "Sparse signal reconstruction for nonlinear models via piecewise rational optimization". In: *Signal Processing* 179 (2021), 107835:1–107835:13.

²Y. Chi, Y. M. Lu, and Y. Chen. "Nonconvex Optimization Meets Low-Rank Matrix Factorization: An Overview". In: *IEEE Transactions on Signal Processing* 62.20 (2019), pp. 5239–5269.

³T. Bonesky, D. Lorenz, and P. Maas. "A generalized conditional gradient method for nonlinear operator equations with sparsity constraints". In: *Inverse Problems* 23.5 (2007).

Global minimizers and Boltzmann distributions

For global optimization, we are interested in exploring two types of sets

- $S_* = \{x \in \mathcal{X}, f(x) = f_*\},\$
- $S_{\varepsilon} = \{x \in \mathcal{X}, f(x) \leq f_* + \varepsilon\}.$

The Boltzmann distributions π_T concentrate on those sets as the parameter T goes to 0.

TemperaturesBoltzmann distributionsT $\pi_T(x) = \exp\left(-\frac{1}{T}f(x) - B(T)\right)$ \downarrow \downarrow 0 $\delta_{S*}(x)$

B(T) is the log-partition function of π_T .

Boltzmann distributions are intractable:

- Their normalization constants $\int \exp\left(-\frac{1}{T}f(x)\right) dx$ are unknown,
- Generating samples $x \sim \pi_T$ is hard,
- Lower values values of T make it even more challenging!

SA in a nutshell

SA algorithms track a sequence of intractable Boltzmann distributions $\{\pi_{T_k}\}_k$ with $T_k \to 0$ by constructing a sequence of tractable proposal distributions $\{q_k\}_k$.

Most of the times, proposals are constructed by iterating Markov kernels $q_{k+1} = q_k P_k$. In this work, we focus on parametric proposals $q_k = q_{\theta_k}$.

Consider the Metropolis-Hastings kernel P_k such that $\pi_{T_k} = \pi_{T_k} P_k$. Applying this kernel⁴ brings us closer to π_{T_k} : qP_k is closer to π_{T_k} than q. Simulated annealing consists in tracking π_{T_k} with $q_k = q_0 P_1 \cdots P_{k-1} P_k$.

Convergence of SA

If
$$T_k = \frac{C(f)}{\log(k+1)}$$
, then $||\pi_{T_k} - q_k||_{TV} \longrightarrow 0$.

- TV convergence implies convergence to the set S_{ε} for any $\varepsilon > 0$,
- The logarithmic schedule is often considered too slow.

⁴G. O. Roberts and J. S. Rosenthal. "General State Space Markov Chain and MCMC algorithms". In: *Probability Surveys* 1 (2004), pp. 20–71.

⁵H. Haario and E. Saksman. "Simulated Annealing Process in General State Space". In: Advances in Applied Probability 23.4 (1991), pp. 866–893.

 $\mathcal{Q} = \{ q_{ heta}, \, heta \in \Theta \}$ is an exponential family if

$$q_{ heta}(x) = \exp\left(\langle heta, \Gamma(x)
angle - A(heta)
ight), \quad orall x \in \mathcal{X}, heta \in \Theta,$$
 (1)

with A being the log-partition function.

Many classes of distributions are exponential families:

- Gaussian distributions, with $\theta = (\Sigma^{-1}\mu, -\frac{1}{2}\Sigma^{-1})^{\top}$ and $\Gamma(x) = (x, xx^{\top})^{\top}$,
- Boltzmann distributions, with parameter $\theta = \frac{1}{T}$ and $\Gamma(x) = -f(x)...$

Moment-matching optimality conditions

$$\theta^* = \underset{\theta \in \Theta}{\arg\min} \operatorname{KL}(\pi, q_{\theta}) \Longleftrightarrow q_{\theta^*}(\Gamma) = \pi(\Gamma).$$
(2)

Model annealing random search⁶ (MARS)

The MARS algorithm relies on this framework of successive minimizations:

- 1. Design an intermediate target $\hat{\pi}_{k+1} = \alpha_{k+1}\pi_{T_{k+1}} + (1 \alpha_k)q_{\theta_k}$
- 2. Approach $q_{\theta_{k+1}}(\Gamma) = \hat{\pi}_{k+1}(\Gamma)$ with importance sampling (N_k samples).

MARS convergence guarantees

The convergence $q_{\theta_k}(\Gamma) \to \delta_{S_*}(\Gamma)$ is guaranteed if $\lambda_k = k^{-\gamma}$, $\sum_k \alpha_k = +\infty$, $\sum_k \alpha_k^2 > +\infty$ and either $T_k = \frac{T_0}{\log(k+1)}$ and $N_k = N_0 k^\beta$ or $T_k = \frac{T_0}{1+ck}$ and $N_k = N_0 \beta^k$.

- Logarithmic cooling schedule, with polynomially increasing number of samples,
- Linear cooling schedule, with exponentially increasing number of samples.

⁶J. Hu and P. Hu. "Annealing adaptive search, cross-entropy, and stochastic approximation in global optimization". In: *Naval Research Logistics* 58.5 (2011).

What is expected from an adaptive cooling schedule?

- If the proposal is a good fit, the schedule should speed up. Else, it should slow down.
- Temperature decrease should be promoted but stopping at T > 0 must be possible.

Boltzmann distributions are exponential, so why not adapt T as well as θ ?

Variational formulation

Our approach is to solve

$$\underset{T>0, \theta \in \Theta}{\text{minimize } KL(\pi_T, q_\theta) + \lambda R(T)},$$

(3)

with an alternating Bregman proximal algorithm.

Alternating proximal simulated annealing (APSA)

We propose to minimize the quantity $F_{\lambda} : (T, \theta) \mapsto KL(\pi_T, q_{\theta}) + \lambda R(T)$ by alternating Bregman proximal steps⁷ that reads like

$$\theta_{k} = \overleftarrow{\operatorname{prox}}_{\rho^{-1}F_{\lambda}(T_{k},\cdot)}^{A}(\theta_{k-1}) = \operatorname*{arg\,min}_{\theta\in\Theta} \left(KL(\pi_{T_{k}},q_{\theta}) + \lambda R(T_{k}) \right) + \rho KL(q_{\theta_{k-1}},q_{\theta}), \quad (4)$$

$$T_{k+1} = \overrightarrow{\operatorname{prox}}_{\rho^{-1}F_{\lambda}(\cdot,\theta_{k})}^{B}(T_{k}) = \operatorname*{arg\,min}_{T>0} \left(KL(\pi_{T},q_{\theta_{k}}) + \lambda R(T) \right) + \rho KL(\pi_{T},\pi_{T_{k}}). \quad (5)$$

A decrease property

For every $k \in \mathbb{N}$, we have

$$KL(\pi_{T_{k+1}}, q_{\theta_{k+1}}) + \lambda R(T_{k+1}) \le KL(\pi_{T_k}, q_{\theta_k}) + \lambda R(T_k).$$
(6)

⁷H. Bauschke, P. Combettes, and D. Noll. "Joint minimization with alternating Bregman proximity operators". In: *Pacific Journal of Optimization* 2 (2006).

Numerical experiments

We use the Rosenbrock function in \mathbb{R}^2 as a benchmark to compare

- MARS (orange),
- mFSA (purple),
- SMC-SA (green),
- APSA (blue).

We used Gaussian proposals indexed by (μ, Σ) for MARS and APSA. For mFSA and SMC-SA, we used $f(\mu_k) = \frac{1}{N_k} \sum_{i=1}^{N_k} f(x_k^i)$.

- APSA finds the best values of μ ,
- The cooling stops before reaching 0.

What we saw in this talk:

- We proposed a variational formulation of adaptive simulated annealing,
- The resulting scheme alternatively adapts a parametric proposal and a temperature,
- It is able to reach good values of the objective very fast,
- But further understanding of its convergence is still needed!

Thank you for your attention!

References

- Akyildiz, O. and J. Míguez. "Convergence rates for optimised adaptive importance samplers". In: *Statistic and Computing* 31.12 (2021).
- Andrieu, C., L. A. Breyer, and A. Doucet. "Convergence of simulated annealing using Foster-Lyapunov criteria". In: Journal of Applied Probability 38.4 (2001), pp. 975–994.
- Bauschke, H., P. Combettes, and D. Noll. "Joint minimization with alternating Bregman proximity operators". In: *Pacific Journal of Optimization* 2 (2006).
- Bezanson, J. et al. "Julia: A Fresh Approach to Numerical Computing". In: SIAM Review 59.1 (2017), pp. 65-98.
- Bonesky, T., D. Lorenz, and P. Maas. "A generalized conditional gradient method for nonlinear operator equations with sparsity constraints". In: *Inverse Problems* 23.5 (2007).
- Černý, V. "Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm". In: Journal of Optimization Theory and Applications 45.1 (1985), pp. 41–51.
- Chan, T. F., S. Esedoglu, and M. Nikolova. "Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models". In: SIAM Journal of Applied Mathematics 66.5 (2006), pp. 1632–1648.
- Chi, Y., Y. M. Lu, and Y. Chen. "Nonconvex Optimization Meets Low-Rank Matrix Factorization: An Overview". In: IEEE Transactions on Signal Processing 62.20 (2019), pp. 5239–5269.
- Chopin, N. and O. Papaspilopoulos. An Introduction to Sequential Monte Carlo. Springer, 2020.
- Dekkers, A. and E. Aarts. "Global optimization and simulated annealing". In: *Mathematical Programming* 50.3 (1991), pp. 367–393.
- Gielis, G. and C. Maes. "A simple approach to time-inhomogeneous dynamics and applications to (fast) simulated annealing". In: *Journal of Physics A: Mathematical and General* 32.29 (1999), pp. 5389–5407.

References (cont.)

- Guilmeau, T., E. Chouzenoux, and V. Elvira. "Simulated Annealing: a Review and a New Scheme". In: 2021 IEEE Statistical Signal Processing Workshop (SSP). 2021, pp. 101–105.
- Haario, H. and E. Saksman. "Simulated Annealing Process in General State Space". In: Advances in Applied Probability 23.4 (1991), pp. 866–893.
- Haeffele, B. D. and R. Vidal. "Global Optimality in Neural Network Training". In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017, pp. 4390–4398.
- Hu, J. and P. Hu. "Annealing adaptive search, cross-entropy, and stochastic approximation in global optimization". In: Naval Research Logistics 58.5 (2011).
- Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi. "Optimization by Simulated Annealing". In: Science 220.4598 (1983), pp. 671–680.
- Marmin, A. et al. "Sparse signal reconstruction for nonlinear models via piecewise rational optimization". In: Signal Processing 179 (2021), 107835:1–107835:13.
- Onbaşoğlu, E. and L. Özdamar. "Parallel Simulated Annealing Algorithms in Global Optimization". In: Journal Of Global Optimization 19.1 (2001), pp. 27–50.
- Roberts, G. O. and J. S. Rosenthal. "General State Space Markov Chain and MCMC algorithms". In: *Probability* Surveys 1 (2004), pp. 20–71.
- Rubenthaler, S., T. Rydén, and M. Wiktorsson. "Fast simulated annealing in \mathbb{R}^d with an application to maximum likelihood estimation in state-space models". In: *Stochastic Processes and their Applications* 119.6 (2009), pp. 1912–1931.

Zhou, E. and X. Chen. "Sequential Monte Carlo simulated annealing". In: *Journal of Global Optimization* 55 (2013), pp. 101–124.