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Non-convex problems are hard...

Non-convex problems possibly have
® several global minimizers,

® |ocal minima,

saddle points,

® 3 combination of the three...

Figure: Level sets of a non-convex function in R?
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And it is hard to avoid them

Many data science tasks can be formulated as optimization problems

Find x € X s.t. f(x) = f. = min f(x).
XEX
Not all of these problems are convex. It can be because of:
® Sparsity penalty?,
® Low-rank prior?

® Non-linear inverse problems3...

LA. Marmin et al. “Sparse signal reconstruction for nonlinear models via piecewise rational
optimization”. In: Signal Processing 179 (2021), 107835:1-107835:13.

2Y. Chi, Y. M. Lu, and Y. Chen. “Nonconvex Optimization Meets Low-Rank Matrix Factorization: An
Overview". In: IEEE Transactions on Signal Processing 62.20 (2019), pp. 5239-5260.

3T. Bonesky, D. Lorenz, and P. Maas. “A generalized conditional gradient method for nonlinear
operator equations with sparsity constraints”. In: Inverse Problems 23.5 (2007).
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Global minimizers and Boltzmann distributions

For global optimization, we are interested in
exploring two types of sets
*:{Xex,f(X):f*}y ‘ “‘ 4
o S.={xeX f(x)<Ff+eh \‘v\"
The Boltzmann distributions w1 concentrate
on those sets as the parameter T goes to 0.

»
/w

‘v",;

Temperatures Boltzmann distributions
T T7(x) = exp (—Ff(x) — B(T))
\ \J
0 ds.(x)

B(T) is the log-partition function of 7.
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Approaching the Boltzmann distributions

Boltzmann distributions are intractable:
® Their normalization constants [ exp (—=f(x)) dx are unknown,
® Generating samples x ~ 7 is hard,
® | ower values values of T make it even more challenging!

SA in a nutshell
SA algorithms track a sequence of intractable Boltzmann distributions {77, }x with
Tx — 0 by constructing a sequence of tractable proposal distributions {qx }«-

Most of the times, proposals are constructed by iterating Markov kernels gx11 = gxPk. In
this work, we focus on parametric proposals qx = qgg, .
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Standard simulated annealing® (SA)

Consider the Metropolis-Hastings kernel Py such that 71, = 71, P.
Applying this kernel* brings us closer to 77,: qPx is closer to 77, than g.
Simulated annealing consists in tracking 7, with gx = qoP1 - - Px—1P«.

Convergence of SA

If T, = then H7T'rk quTV — 0.

_C(f) _
log(k+1)"

® TV convergence implies convergence to the set S. for any ¢ > 0,

¢ The logarithmic schedule is often considered too slow.

*G. 0. Roberts and J. S. Rosenthal. “General State Space Markov Chain and MCMC algorithms”. In:
Probability Surveys 1 (2004), pp. 20-71.
®H. Haario and E. Saksman. “Simulated Annealing Process in General State Space”. In: Advances in

Applied Probability 23.4 (1991), pp. 866—893.
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Parametric proposals

Q = {qq, 6 € O} is an exponential family if
ao(x) = exp ((0,T(x)) — A(6)), VxcX,0¢c0, (1)

with A being the log-partition function.
Many classes of distributions are exponential families:

e Gaussian distributions, with 6 = (Z~1u, =¥ "1)T and [(x) = (x, xx") T,

e Boltzmann distributions, with parameter § = + and (x) = —f(x)...

Moment-matching optimality conditions

0* = argmin KL(m, qp) <= qo-(I") = =(I"). (2)
0cO
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Model annealing random search® (MARS)

The MARS algorithm relies on this framework of successive minimizations:
1. Design an intermediate target 7411 = ayxp17T,,, + (1 — ax)ap,
2. Approach gy, ., (') = #x41() with importance sampling (N samples).

MARS convergence guarantees

The convergence qg, (I') — 65, () is guaranteed if Ay = k™7, >, ay = 400,
> a2 > +oo and either Ty = ﬁﬁ) and Ny = Nok? or Ty = %?67 and N, = Nyjk.

® | ogarithmic cooling schedule, with polynomially increasing number of samples,

® Linear cooling schedule, with exponentially increasing number of samples.

®J. Hu and P. Hu. “Annealing adaptive search, cross-entropy, and stochastic approximation in global

optimization”. In: Naval Research Logistics 58.5 (2011).
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Proposed adaptive cooling schedule

What is expected from an adaptive cooling schedule?
® |f the proposal is a good fit, the schedule should speed up. Else, it should slow down.

® Temperature decrease should be promoted but stopping at T > 0 must be possible.

Boltzmann distributions are exponential, so why not adapt T as well as 6 ?

Variational formulation

Our approach is to solve

inimize KL AR(T
minjize KL(rr, a0) + AR(T), ©

with an alternating Bregman proximal algorithm.
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Alternating proximal simulated annealing (APSA)

We propose to minimize the quantity Fy : (T,0) — KL(7T,qg) + AR(T) by alternating
Bregman proximal steps’ that reads like

Ok = o< ip (1, (0 1) = arg min (KL(w7,, q9) + AR(Tk)) + pKL(q0,_,, G0),  (4)

6cO
Tit1 — W(Eflpk(._yk)(Tk) = ar_,g_ggin (KL(7T, Qé)k) + AR(T)) + pKL(7T, 7TTk)- (5)

A decrease property

For every k € N, we have

KL(T(THN q9k+1) + )‘R( Tk+1) < KL(T‘-TIM qok) + )‘R( Tk)' (6)

"H. Bauschke, P. Combettes, and D. Noll. “Joint minimization with alternating Bregman proximity

operators”. In: Pacific Journal of Optimization 2 (2006).
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Numerical experiments

We use the Rosenbrock function in R? as a
benchmark to compare

MARS (orange),
mFSA (purple),
SMC-SA (green),
APSA (blue).

We used Gaussian proposals indexed by
(1, X) for MARS and APSA. For mFSA and

SMC-SA, we used (i) = 7= S F(xh).

e APSA finds the best values of 1,

® The cooling stops before reaching 0.
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Conclusion

What we saw in this talk:
e We proposed a variational formulation of adaptive simulated annealing,

¢ The resulting scheme alternatively adapts a parametric proposal and a
temperature,

It is able to reach good values of the objective very fast,

But further understanding of its convergence is still needed!

Thank you for your attention!
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