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Motivation: Acoustic Echo Cancellation

> Problem: Identify acoustic transfer function (ATF)
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Robust adaptation control for improved convergence rate
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Iterative ATF Estimation

dT - Q(XTGWTfl)

1. Estimate echo d, by linear convolution of X
> loudspeaker signal block x-
» with ATF estimate W, ;.

» and linear convolution constraint matrix Q
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Iterative ATF Estimation

er=y,—d. =y, — Q(x. © i, )
WT = WT—I + G (X: O} eT)

1. Estimate echo (AL by linear convolution of X,
> loudspeaker signal block x-
> with ATF estimate w,_i.
> and linear convolution constraint matrix Q

2. Compute error signal block e

3. Compute stochastic gradient G (x> @ e,) N
with FIR filter projection matrix G

4. Perform gradient descent
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Adaptation Control
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Large error powers ||e.||” could result from ~
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Adaptation Control

e,,:yT—LAi,_:n,,—i—(dT—tAi,_)
1+ GN.(x:oe,)

>
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could result from

2
Large error powers ||e. ||

» system mismatch, i.e., imprecise echo
estimates d, = Update filter coefficients

» interfering signals n. = Stall filter adaptation

Solution: Control adaptation by time- and
frequency-dependent step-sizes [A. |4
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Traditional Model-Based Adaptation Control

AVE — £ (wix, YN aWAW )

Xr

Compute step-size matrix /\5"3 as a function of
» loudspeaker PSD \IJ>T<X

> interference PSD W'"

> filter estimation uncertainty WTAWAW

> ... €r

Prominent examples:
FDAF, DFT-domain Kalman filter, ...
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Traditional Model-Based Adaptation Control

AVE — £ (wix, YN aWAW )

X7

Challenges

» Estimation of signal statistics of unknown
quantities, e.g., lIJIE'N

» Mismatch of assumed model properties
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OQOutline

» Proposed DNN-Based Adaptation Control
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Proposed General Concept

DNN .
/\T :fDNN (xl,el,...,xT,eT,O)

]
» Learn mapping fonn of observed signal A
sequences to step-size matrices oo
» DNN parameters 6 are learned from N
training data (IP
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Proposed Step-Size Structure

DNN !
|:AT ]ﬁf = myg .

DNN provides raw step-size ), € [0, fimax]
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Proposed Step-Size Structure
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Challenges: DNN needs to model
> large numerical range due to non-whiteness of loudspeaker signals

DNN provides raw step-size m; € [0, umax]
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m

pnn] . M
ADNN) . _hr
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Challenges: DNN needs to model

» large numerical range due to non-whiteness of loudspeaker signals

Normalize raw step-size mf . by loudspeaker PSD estimate \IJXX
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Proposed Step-Size Structure

m
[ADNN} _ my -
T TWUXx
ff wfr +

s

Challenges: DNN needs to model

» large numerical range due to non-whiteness of loudspeaker signals

» rapid changes due to non-stationarity of interfering signals

Traditional Approach: Normalization by interference PSD estimate
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Proposed Step-Size Structure

mf,‘r

PV e P

o

Challenges: DNN needs to model

» large numerical range due to non-whiteness of loudspeaker signals

» rapid changes due to non-stationarity of interfering signals

Normalization by masked error power | le-]; 2
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Proposed Step-Size Structure

“w
myg -

vV e P

[ADNN]
-
Challenges: DNN needs to model

» large numerical range due to non-whiteness of loudspeaker signals

» rapid changes due to non-stationarity of interfering signals

Exploitation of domain knowledge from traditional adaptation control
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DNN Architecture

» Feature vector ..
> Log. loudspeaker power spectrum
> Log. error power spectrum
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DNN Architecture

[ADNN]

» Feature vector
> Log. loudspeaker power spectrum
> Log. error power spectrum

» Extract temporal information by GRU layers
» DNN provides masks ! € [0, umax] and €10,1]

> Time- and frequency-dependent step-sizes [APNN]
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DNN Training

Challenges:
» Choice of optimum target step-sizes

» Cost function design
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Proposed Solution

End-to-end training of DNN parameters € w.r.t.
achieved system identification performance

Cost function:

J T
1
J(0) =252 ) 10logy (1))
j=17

=1
with normalized system distance
lw, . —w; |3
[, 113

Jj: sequence index, 7: block index

T, =
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OQOutline

» Experimental Evaluation
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Experimental Evaluation: AEC Application

» Loudspeaker signal: 143 different speakers
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» Interfering signal
> 145 different speakers
(echo-to-near-end power ratio € [—-10dB, 10dB])

> White Gaussian noise
(echo-to-noise power ratio € [25dB, 35dB])

Separation into disjoint training and testing data sets
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Algorithmic Settings

> FIR filter length: 2048 samples

X7 A

> Frame shift: 1024 samples A x
[ n
> #DNN parameters: 2.4 million oS
. . . . ™ v 'ldT

» Training optimizer: Adam )‘8

|
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Performance Measures

» Normalized system distance (the lower the better)

X
-V |3 T
TZP,T —10 IOglO H ?T”Z
[l 113
with V being a zero-padding matrix
i,
» ERLE (the higher the better)
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Performance Measures

» Normalized system distance (the lower the better)

— Vi |2 X
rT‘zpﬂ— =10 |Og10 —H || ||? ||2
2
with V being a zero-padding matrix

w, | 0
» ERLE (the higher the better) n
E[||d. |2 % '

eT iy T

£, = 10logy, — 121Gl - D

E|lid, - d.I3]

Arithmetic average of 100 experiments with randomly-selected
loudspeaker and interfering signals, AIRs and transition times.
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Analysis of Proposed DNN-FDAF

—— DNN-FDAF
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Analysis of Proposed DNN-FDAF

—— DNN-FDAF - DNN-FDAF (m¢ . = 0)

O,
m
o
s O
X
N o—10
=
—15
| | | | | | | ]
0 2 4 6 8 10 12 14 16
Timeins
n
m
[I\ENN] = < f.r Discarding normalization
B

|E/A\U Friedrich-Alexander-Universtat Haubner et al.: Deep Learning-Based Adaptation Control May 2022
[/ Chair of Multimedia Communications and Signal Processing 17 /20



System ldentification DNN-Based Adaptation Control Experiments Conclusion

Analysis of Proposed DNN-FDAF

— DNN-FDAF - DNN-FDAF (m , = 0) — DNN-FDAF (m}_=0.5) |
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m
o)
s O
L
N —10
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Static and frequency-independent
raw step-size
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DNN-Based Adaptation Control

System ldentification
System ldentification Performance
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System ldentification Performance
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DNN-FDAF: Fast convergence and high steady-state performance
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Echo Cancellation Performance

- - - KF (1 process noise) - - - EA-FDAF
--- KF (] process noise) — DNN-FDAF
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DNN-FDAF: Improved echo cancellation performance
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Conclusion

Summary

» Novel adaptation control for online system identification by using
DNN-based step-size inference

» End-to-end optimization of DNN parameters w.r.t. average
system identification performance
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Outlook

> Joint control of system identification and further parts of speech
enhancement algorithms, e.g., spectral postfiltering

> Extension to unsupervised system identification applications
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Conclusion

Summary

» Novel adaptation control for online system identification by using
DNN-based step-size inference

» End-to-end optimization of DNN parameters w.r.t. average
system identification performance

Outlook

> Joint control of system identification and further parts of speech
enhancement algorithms, e.g., spectral postfiltering

> Extension to unsupervised system identification applications

Thank you for watching!
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