Introduction	System Model	Bilinear Vector Approximate Message Passing Algorithm Bi-VAMP	Results and Benchmarking	Conclusion

MASSIVE UNSOURCED RANDOM ACCESS BASED ON BILINEAR VECTOR APPROXIMATE MESSAGE PASSING

Ramzi Ayachi, Mohamed Akrout, Volodymyr Shyianov, Faouzi Bellili, Amine Mezghani

IEEE ICASSP 2022

Introduction O	System Model	Bilinear Vector Approximate Message Passing Algorithm Bi-VAMP	Results and Benchmarking	Conclusion
Outline	s			

1 Introduction

2 System Model

3 Bilinear Vector Approximate Message Passing Algorithm Bi-VAMP

4 Results and Benchmarking

5 Conclusion

Introduction	System Model	Bilinear Vector Approximate Message Passing Algorithm Bi-VAMP	Results and Benchmarking	Conclusion
Introdu	ction			

- We introduce a new algorithmic solution to the massive unsourced random access (mURA) problem.
- Relies on slotted transmissions and takes advantage of the inherent coupling provided by the users' spatial signatures in the form of channel correlations across slots to completely eliminate the need for concatenated coding.
- Bilinear vector approximate message passing (Bi-VAMP) algorithm.

Introduction O	System Model •00	Bilinear Vector Approximate Message Passing Algorithm Bi-VAMP	Results and Benchmarking	Conclusion
System	n Model			

- Base Station (BS) serving *K*_a active devices.
- The number of active devices K_a is assumed to be much smaller than the total number of devices K, i.e., $K_a \ll K$.
- Each active device aims to convey *B* information bits to the BS.
- Slotted transmission framework (Each active user divides its *B*-bit packet into *L* equal-sized chunks of $J = \frac{B}{L}$ bits).
- Codebook $\boldsymbol{\mathcal{A}} = \left[\boldsymbol{a}_1, \boldsymbol{a}_2, \cdots, \boldsymbol{a}_{2^J} \right] \in \mathbb{C}^{\frac{n}{L} \times 2^J}.$

Introduction	System Model	Bilinear Vector Approximate Message Passing Algorithm Bi-VAMP	Results and Benchmarking	Conclusion
	000			

$$\mathbf{y}_{m,l} = \sum_{k=1}^{K} \sum_{j=1}^{2^{J}} \sqrt{\beta_k} g_{k,m} \delta_{j,k,l} \mathbf{a}_j + \mathbf{w}_{m,l}.$$

Where :

 $\blacksquare \ \beta_k \text{ is the large scale fading,}$

■ $g_{k,m} \sim CN(\mathbf{0}, \mathbf{I})$ is small scale fading,

■ $\mathbf{w}_{m,l} \sim \mathcal{CN}\left(\mathbf{0}, \sigma_{w}^{2}\mathbf{I}\right)$ is the white additive Gaussian noise,

 $\delta_{j,k,l} = \begin{cases} 1 & \text{if user } k \text{ transmits codeword } \mathbf{a}_j \text{ in the } l^{th} \text{ slot} \\ 0 & \text{otherwise} \end{cases}$

Introduction	System Model	Bilinear Vector Approximate Message Passing Algorithm Bi-VAMP	Results and Benchmarking	Conclusion
	000			

$\mathbf{Y}_l = \mathcal{A} \Delta_l \mathbf{H} + \mathbf{W}_l \quad \text{for} \quad l = 1, \dots, L.$

The number of codewords sent in each $\{I^{th}\}_{l=1}^{L}$ slot must be equal to K_a .

Different users can transmit the same codeword in the same slot.

Every user transmits exactly *L* codewords over the whole transmission period.

Introduction	System Model	Bilinear Vector Approximate Message Passing Algorithm Bi-VAMP	Results and Benchmarking	Conclusion
		000		

Bilinear Vector Approximate Message Passing Algorithm Bi-VAMP

- Solves the bilinear equation $\mathbf{Y}_{l} = \mathbf{X}_{l}\mathbf{H} + \mathbf{W}$.
- We set $\mathbf{X}_{l} \triangleq \mathbf{A} \mathbf{\Delta}_{l}$.
- Enables the use of different priors on the columns of H as well as on the rows of X.

Introduction	System Model	Bilinear Vector Approximate Message Passing Algorithm Bi-VAMP	Results and Benchmarking	Conclusion
		000		

Figure – Block diagram of the adapted Bi-VAMP algorithm with its three modules : two denoising modules incorporating the prior information, $p_{\mathbf{H}}(\cdot)$ and $p_{\mathbf{\Delta}}(\cdot)$ and the approximate bi-LMMSE module. The three modules exchange extrinsic information/messages calculated through the **ext** blocks, **G** and **F** are used to enforce the column-wise structure of $\mathbf{\Delta}_{I}$ in mURA using its row-wise extrinsic information provided by the standard Bi-VAMP algorithm.

Introduction	System Model	Bilinear Vector Approximate Message Passing Algorithm Bi-VAMP	Results and Benchmarking	Conclusion
		000		

The *F* block finds the posterior mean/precision of the columns of X_i from those of the rows of Δ_i.

$$\begin{split} \widehat{\mathbf{X}}_{\mathrm{p}}^{+} &= \mathbf{A} \, \widehat{\mathbf{\Delta}}_{\mathrm{p}}^{+}, \\ \gamma_{\mathbf{X}_{\mathrm{l},\mathrm{p}}}^{-1} &= \frac{L}{n} \mathrm{Tr}(\mathcal{A} \, \mathbf{R}_{\mathbf{\Delta}_{\mathrm{l},\mathrm{p}}^{+}} \, \mathcal{A}^{\mathrm{T}}) \end{split}$$

The *G* block finds the extrinsic mean/precision of the columns of Δ_l from those of the rows of X_l.

$$\widehat{\boldsymbol{\Delta}}_{e}^{-} = \beta \, \boldsymbol{\mathsf{A}}^{\mathsf{T}} \widehat{\boldsymbol{\mathsf{X}}}_{e}^{-},$$
$$\gamma_{\boldsymbol{\Delta}_{\mathsf{I},e}^{-1}}^{-1} = \alpha \, \mathsf{Tr}(\boldsymbol{\mathcal{A}}^{\mathsf{T}} \, \gamma_{\boldsymbol{\mathsf{X}}_{\mathsf{I},e}^{-1}}^{-1} \boldsymbol{\mathcal{A}})$$

Introduction	System Model	Bilinear Vector Approximate Message Passing Algorithm Bi-VAMP	Results and Benchmarking	Conclusion
			•00	

Results and Benchmarking

Covariance-based	Clustering-based
 B = 104 L = 17 slots 	 L = 6 slots B = 102 information bits per packet
We set the parity allocation for the outer tree code to p = [0, 8, 8,, 14]	Bi-VAMP-based
 Total rate of the outer code R_{out} = 0.437 J = 14 coded bits per slot 	 L = 10 slots B = 100 information bits per packet

Introduction O	System Model	Bilinear Vector Approximate Message Passing Algorithm Bi-VAMP	Results and Benchmarking OOO	Conclusion 00
		5 data points		
		$M_r/K_a = 0.6$		
		$K_a \in \{50, 75, 100, 150, 200\}$ and		
		$M_r \in \{30, 45, 60, 90, 120\}$		

Spectral efficiency a function of the number of active users at a target error probability of 10^{-2} .

Introduction	System Model	Bilinear Vector Approximate Message Passing Algorithm Bi-VAMP	Results and Benchmarking	Conclusion
			000	

Performance of the proposed scheme as a function of the spectral efficiency and number of receive antenna elements, M_r , with a fixed number of active users $K_a = 200$ and SNR = 30 dB

Introduction O	System Model	Bilinear Vector Approximate Message Passing Algorithm Bi-VAMP	Results and Benchmarking	Conclusion • O
Conclu	sion			

- We proposed an integrated algorithmic solution to the mURA problem.
- Our method is based on slotted transmissions and the Bi-VAMP algorithm.
- It takes advantage of the inherent coupling provided by the spatial signatures in the form of channel correlations across slots and eliminates the need for concatenated coding.
- It combines the steps of activity detection, channel estimation and data decoding into a unified URA framework.

Introduction	System Model	Bilinear Vector Approximate Message Passing Algorithm Bi-VAMP	Results and Benchmarking	Conclusion
				00

THANK YOU!

