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SUMMARY

The unlabeled sensing problem is to solve a noisy linear system of equations under

unknown permutation of the measurements. We study a particular case of the
problem where the permutations are restricted to be r-local, i.e. the permutation
matrix is block diagonal with rxr blocks. We propose a proximal alternating
minimization algorithm that provably converges to a first order stationary point.

We validate the algorithm on synthetic and real datasets. We also formulate the 1-

d unassighed distance geometry problem as an unlabeled sensing problem with a
structured measurement matrix.

PROBLEM STATEMENT

Unlabeled sensing problem. Given permuted measurement matrix
Y € R™*™ estimate signal matrix X € R¥*™ from

Y = PBX + W,

where P € P,,«,, 1s an unknown permutation matrix, W € R™*™ |s |.1.d.

Gaussian noise with per-entry variance o2.

Left. Sparse permutation. Right. Proposed r-local permutation.

PROPOSED ALGORITHM

@ Given Y = PBX + W, consider the following optimization problem.
minimize x p ||Y — PBX]||; (2)
subject to P € P,.

@ Several existing works consider one-step estimators for P, X.

@ We propose Proximal Alternating Minimization (PAM) algorithm for (2).

For A > 0,
P¢*Y = argmin |[Y — PBX® |2 + \|P — P®) |, (3)
PcP,
XD — argmin |[Y — PUTUBX||2 + 2| X — X2 (4)
XE[R.—:E:{m

@ The proximal A terms in (3),(4) regularize the alternating minimization
updates on P, X and guarantee convergence to stationary point.

PAM iterates {(P"), X))} converge to first order stationary point of the
objective in (2).

APPLICATIONS

1. Unassigned Distance Geometry Problem
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The 1-d unassigned distance geometry problem (uDGP) i1s to
recover the point coordinates (0, 3,7, 9) from their unlabeled

pairwise distances {3, 2,4,6,7,9}. uDGP can be formulated
as an unlabeled sensing problem with a deterministic mea-

surement matrix.

2. Scrambled Image Recovery

Left. Input image. Middle. Scrambled image. Right. Reconstruction by algorithm.

3. Jittered Sampling

—
X(t) T»_M - \
N KA

o]

|~ AT Ll
= f:i‘”“‘ Sy T gy -

Iy RS -

L~ oco J kD [ | A ]

* Ck-D * 4
T

4 permuted samples (blue, green) are output at each clock cycle T.

INITIALIZATION

Y = P, nBXixm, where P = blkdiag(Py,--- ,P,/,)

@ Each block Y;. € R"™™"™ can be expressed as

PrBi.X =Yy

@ Sum shuffled measurements in each block [P, B: Y] to obtain n/r
measurements

17[P;.BL Y] — [biy] Yk € [n/r]
o Initialization X9 is given by minimum norm solution to the n/r equations

X =By

RESULTS: SYNTHETIC DATA

n = 1000 m = 50 d = 100 SNR =100
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Y =P"B,«4X].,, + W. The fractional Hamming distortion dz /n (y-axis), i.e. the
number of mismatches dy (P, P) = X;1(P(i) # P(4)), is plotted against block size r
(x-axis).
e Data generation. The entries of the sensing matrix B and the signal
matrix X are sampled i.i.d. from the IN(0, 1) distribution.

@ Results. Proposed algorithm recovers P for block size » < n/8.

RESULTS: SCRAMBLED IMAGE RECOVERY

Left. Unscrambled input image y from the YALE B and MNIST dataset. Middle.
Scrambled input image Py. Right. PAM reconstruction y = PTPy.

@ The sensing matrix B contains d = 10 principal components of the dataset.
@ PAM reconstructs original image from unrecognizably scrambled input.

BENCHMARKS

Let [°,. denote the set of X r permutation matrices. Let & be the number of
blocks in P. For k € [R],

@ One-step estimator [Zhang et al., "21].

P, = argmin —(P,YY™BBT)
PeEP,xr

@ Biconvex relaxation [Zhang et al., "20].

P, = argmin —(P;.BB'P,YYT) st. P, =P,
Pl-_PE'ElFi-'-:-{i-‘

@ One-dimensional Levsort [Pananjady et al, '17].

l?’k = argmin ||diag(UyU<,) — Pdiag(UBUTE)H%,
PEIP?‘K r

U denote singular vectors.
e RLUS/Quadratic Assignment Problem (QAP) [Abbasi et al., "21].

P, = argmin 1YY — P{"k{’-;PTH%
PEIPP:#:T

CONCLUSION AND FUTURE WORK

@ We proposed a new algorithm for the r-local unlabeled sensing problem
that outperforms existing algorithms.

@ In future work, i) we will explore the second-order convergence properties
of the proposed algorithm.

@ ii) For what range of problem parameters (n, m,d, o), does the proposed
algorithm recover the true permutation?
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